
An Architectural Style for Data-Driven Systems

Reza Mahjourian

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611, USA
rezam@ufl.edu

Abstract. Data-driven systems and applications are specialized software solu-
tions for acquisition, management, and presentation of information. These sys-
tems are usually developed using the same software tools, technologies, and pro-
cesses used for creating any other type of software. Not only is this approach inef-
ficient, but also it results in extreme redundancies due to the inherently repetitive
nature of these applications. However, data-driven systems exhibit characteristics
which can be exploited for extensive reuse across a single application or a fam-
ily of applications. In this paper, we present XPage, an architectural style which
is especially designed for building data-driven systems. We also provide several
case studies from real-world deployments of XPage to help evaluate its efficiency
and flexibility for developing real-world solutions.

1 Introduction

Data-driven systems are software solutions for information and data management. The
two primary functions of these systems are acquisition and presentation of information.
Information acquisition is typically performed using data entry forms or via interfac-
ing with external data sources. Information presentation is concerned with retrieval and
display of stored information to the user with appropriate navigation and querying facil-
ities. Data-driven systems are also characterized by requiring intensive user interaction
both for acquisition and retrieval of information. They are beyond doubt among the
most common types of customized software systems in use today. University regis-
tration systems, e-commerce applications, content management systems, financial and
accounting applications, a personal address book, and an online photo album are a few
examples of data-driven applications.

Despite the existence of a consistent demand for development of new data-driven
systems, they are mostly developed as one-off projects, with little reuse taking place
beyond what is offered by the development technologies and programming languages
used. Recently, the software industry has introduced some development frameworks
which offer higher-level programming libraries to help with rapid development of data-
driven applications. However, these frameworks are not high-level enough to prevent
the repetitive nature of data-driven systems from showing up in the final programs as
repetitions of nearly identical code segments or constructs. Moreover, none of these in-
dustrial frameworks offer an explicit software architecture, and the software engineering
decisions behind their designs are buried in their implementations.



Academic research on producing agile techniques or methods for developing data-
driven systems is severely lacking as well. Software engineering researchers consider
data-driven applications to be in the realm of database research, because of their concen-
tration on information management tasks. In addition, the seemingly primitive nature
of “reading and writing structured data” appears to be lacking the necessary complex-
ity to qualify as an interesting software research problem. On the other hand, database
researchers have little interest in solving the software engineering challenges involved
in streamlining development and managing complexity of software systems. In spite of
that, it is quite surprising to know that the very little work done in this area comes from
the database research community, and not from the software research community.

In this paper, we present an architectural style [1, 2], which is specifically designed
for creating and maintaining data-driven systems. This architectural style has been ex-
tracted from a software framework we developed in 2001 and gradually extended after-
wards. We have dubbed the architectural style XPage, following the name of the original
framework.

Before discussing the XPage style in detail, we are going to review the related work
in Sect. 2. Section 3 presents the architectural style and its key components and con-
nectors. Section 4 provides three cases studies from real-world applications developed
based on this style. Finally, Sect. 5 wraps up the paper with conclusions.

2 Related Work

A comprehensive framework for developing data-driven applications should address a
wide array of concerns, from providing efficient data storage and retrieval mechanisms,
to handling complex user interactions in the presentation and view layer. To our best
knowledge, no other architectural style has been proposed to support development of
data-driven systems to this extent. However, there are some solutions proposed by the
database research community which focus on related problems.

The most notable example in this category is WebML [3, 4]. WebML is a product
which provides a model-based development environment with a database-oriented view.
The core of the application is created with a “structural model” which outlines the
data model. Special-purpose data-aware “units” or “operations” are provided for data
presentation or manipulation tasks. A program is created by associating these special
units with the objects defined in the structural model. A “navigation model” is used to
establish the links between different pages and content units.

In [5, 6], Vigna proposes a solution based on developing the entire application out
of the Extended ER (Entity Relationship) model [7]. In their solution, the cardinality
constraints on entity relationships in the ER model are used to decide an appropri-
ate presentation and navigation model for the application. Based on an augmented ER
model, their software generates SQL statements for creating the required tables. The de-
veloper is expected to execute these statements to create the underlying database. User
interface forms are also automatically created based on the ER model. Afterwards, the
application can be customized directly by modifying the generated forms.

Even though the organization of data-driven applications is mostly influenced by the
structure of their underlying data repositories, ER models lack the required expressive



power to specify the structure and behavior of an entire application. In any data-driven
system, a key factor in deciding the appropriate navigation and presentation model is
the predefined flow of information according to its underlying business processes. This
information is not captured in the ER model. A flexible software development frame-
work requires mechanisms for specifying the business logic and view organization of an
application independently of its underlying data model. Another undesirable side-effect
of using ER models is that since Relational Databases Management Systems (RDBMS)
are not directly based on ER models, the ER-based development tools have to assume
responsibility for creating and managing the relational database as well. However, this is
inflexible and counter-productive, since in many real-world situations there are database
experts who prefer to design and fine tune the database independently. A requirement
for working with legacy databases poses a similar problem.

Recently, we have witnessed introduction of some industrial software development
frameworks which enable web developers to create data-driven applications more effi-
ciently and rapidly. Examples of these frameworks include Ruby on Rails and CakePHP.
The core of these frameworks is based on the concept of Active Records, which provide
a two-way mapping between object classes and database tables. Any instantiation or
modification of Active Records is directly reflected on their associated tables. Foreign
key relationships are exposed in Active Records by linking attributes of one object to the
instances of the referred objects. To implement the logic of an application, these frame-
works recommend developers to write “controllers”, which are service entry points for
user defined operations on the data. However, they do not offer any higher-level com-
ponents for the view layer of an application. The scaffolding technique can be used to
rapidly create the view layer code out of the structure of the Active Records. However,
the produced artifact is low-level code and the relationship between this code and the
original Active Record can be lost with subsequent modifications to the either artifacts.
Another source of inefficiency with these frameworks is that the standard mechanism
for retrieving data from Active Records involves traversing them row by row to reach
individual data objects. This suggests a low-level programming style, which for many
data-driven scenarios can be entirely abandoned for a high-level view of the “whole
data set”.

None of these solutions address the software engineering side of the problem. Al-
though they facilitate implementation of data-driven applications, their lack of an ex-
plicit architectural design makes it difficult to analyze these solutions with regard to
issues of interest to the software engineering community. Moreover, since the rela-
tionship between implementation-level constructs and the architectural components and
connectors is not clear, it is not easy to determine their potential for reuse across differ-
ent domains. Nor can one try to formalize a process for designing, implementing, and
maintaining the components needed for these solutions.

Another class of solutions which are extensively employed in creating data-driven
systems are various middle-ware technologies such as Enterprise Java Beans [8]. These
middle-ware technologies offer standardized interfaces for accessing and manipulating
data sources, and include basic services such as concurrency, distribution, security, and
component naming and registry. Such technologies can provide the platform for han-
dling the data storage and retrieval tasks in data-driven systems, and thereby answer one



side of the problem. However, they do not offer specialized solutions for the view layer.
Another shortcoming of these technologies is that they do not suggest any particular
architecture on their surrounding system. The assumption is that developers use “glue”
code to instantiate, utilize and maintain these objects whenever necessary. Despite be-
ing flexible, this is less in line with the spirit of software architectures, which advocate
reuse by formalizing exemplification of good engineering solutions.

In [9, 10] Mattmann et al. present the OODT reference architecture, which is a
solution for locating remote data sources and aggregating data from distributed data
providers. OODT components and connectors provide the services of data source reg-
istry, identification, and querying on top of the industrial middle-ware technologies.
Although OODT components and connectors can be employed for creating data-driven
systems, like middle-ware technologies, OODT does not offer any solution for the view
layer of these systems, mainly because its focus is on a different problem. Abstract-
ing and modeling the interactions in the view layer of data-driven applications is much
more complex than modeling the data layer operations, which more or less exhibit a
linear input-output model. Lastly, like middle-ware technologies, OODT’s solution is
“programmer-intensive” [9] as it does not employ a high-level description language.

3 The Architectural Style

In this section, we introduce the XPage architectural style and its accompanying devel-
opment framework. First we provide an overview of the style and its key characteristics.
We then proceed to introduce some of the individual components and connectors.

3.1 Overview

Overall Architecture An XPage application is comprised of a set of interconnected
View Pages. A View Page can be regarded as an abstraction of a web page, or a desk-
top form. Each View Page, in turn, contains one or more View Forms. The View Forms
are data-aware components which can directly interact with the end-user. XPage of-
fers different types of View Forms for common information acquisition, manipulations,
and presentation tasks. Each View Form is connected to one or more Data Sources. A
Data Source abstracts the data model of the underlying data source or destination. Data
Sources, in turn, are associated with Data Adapters, which are connectors whose func-
tion is to provide a consistent interface over different types of data repositories available
to the application. View Pages and View Forms constitute the view layer of an XPage
application, while Data Sources and Data Adapters constitute its data layer. Figure 1
shows the overall architecture of XPage and its key components and connectors.

XPage components and connectors rely on a predefined initialization and launch
protocol for their operation. Upon receiving a request for a specific View Page from the
end-user, a Coordinator connector locates the corresponding XML file and instantiates
the View Page component. This process is repeated for the View Forms in the loaded
View Page and for any other components and connectors referenced in them. Once the
component and connector hierarchy is loaded, a sequence of events are propagated in
the hierarchy starting at the root View Page component. Some of the key events are



View Page View Form

Row Selector

View Attr.

View Input

Transroute

S
o
u
rc

e 
C

o
o
rd

.

In
p
u
t 

C
o
o
rd

.
F

o
rm

 C
o
o
rd

.

View Link

P
ag

e 
C

o
o
rd

.

Data Source

Data Attr.

A
d
ap

te
r 

C
o
o
rd

.
D

o
m

ai
n
 C

o
o
rd

.

Data Adapter

Domain

Data Repository

Fig. 1. The overall XPage architecture

load, init, register, process read, process write, and commit. User input and preferences
are also passed to the components in the form of Message objects at various points
in this sequence. Depending on its function, each component and connector may do a
different task upon receiving the events.

Component and Connector Granularity The components and connectors of XPage
are divided into two distinct groups, based on their granularity. The coarse-grained
components and connectors, are first-level players in the architecture of an application.
They bundle considerable amount of functionality to make them capable of handling
significant data-driven responsibilities in a data-driven system. However, the XPage
style defines these coarse-grained components and connectors in terms of a number of
common fine-grained components and connectors. The fine-grained components and
connectors are generalizations of the common structural and behavioral elements which
constitute the coarse-grained components.

Communication In the data layer, components communicate with direct synchronous
messages. In the view layer, communications take place by sending asynchronous mes-
sages which are carried by Message objects. Some particular interactions are so fre-
quently used in data-driven systems that they demand for special treatment. For in-
stance, in many cases, components rely on receiving foreign key parameters to deter-
mine what data item to display or manipulate. On a data entry form, a foreign key
parameter must be received to establish a relationship between the newly created en-
tity and its related entities in the database. Other frequent scenarios include requesting
particular sort orders or filters on the presented information. In order to facilitate these
interactions, XPage offers a Message type hierarchy, which covers various user inter-
face events as well as inter-component communications.

Messages can be private or global. Private Messages have a particular recipient ad-
dress, while Global Messages carry parameter-like values and are available to the entire
component hierarchy. The private and global messages allow components to implement
“push-”, or “pull-”based communications, which are both handy in data-driven systems.
In the view layer, all Messages are handled by a universal connector called the Tran-
sroute connector, which locates message recipients by their registered addresses. The
Transroute connector is also responsible for processing user interface transitions such
as submission of forms or loading of a new View Page.



The XPage Language All the coarse-grained and fine-grained components of XPage
are configured using an XML-based domain-specific language. A set of all such XML
files is enough to describe an XPage application. At run time, XML files are loaded
to instantiate and initialize the components and connectors upon request. The XPage
framework employs an object caching mechanism to increase the performance of the
application.

Extensibility Clearly, complex applications have requirements which cannot be sat-
isfied with the generic functionalities embedded in XPage components and connec-
tors. Most components and connectors feature a number of extension points to let de-
velopers customize their behavior. The extension points are usually associated with
the predefined events. There are two extension points for every event. For example,
corresponding to the process write event, there are two extension points called be-
fore process write and after process write. Developers can plug in custom code in these
extension points to directly control the behavior of the components. For example, a
data entry form can use the before process write extension to perform additional val-
idations and potentially prevent the component from storing the data by canceling the
process write event.

In the following sections, we describe the XPage components and connectors in
more detail.

3.2 Data Layer

Data Adapter – This coarse-grained connector is used to abstract away the heteroge-
neous interfaces of different types of data repositories. Whether the data repository is an
RDBMS, an XML file, or a gateway to a remote web service, appropriate Data Adapters
make them available to the application through a consistent interface which allows for
data retrieval and data manipulation. Data Adapters translate the service requests into
a language understandable by the underlying data repository. For instance, a request
can be translated into a SQL query, an XPath query, or a web service invocation mes-
sage. Data Adapters also offer transactional services to maintain the integrity of data
repositories when multiple components need to collaborate for a single data operation.

Data Source – This coarse-grained component works on top of a Data Adapter.
Data Sources are used to elevate the flat interface provided by Data Adapters to a hier-
archical object model suitable for complicated interactions that view layer components
need. Like Data Adapters, Data Sources provide data retrieval and manipulation inter-
faces, however in a more structured manner. Users of a Data Source work with indi-
vidual Data Attributes which correspond to the columns in its data source or target. In
addition, Data Sources can enforce various integrity constraints by collaborating with
other Data Sources on related entities.

Data Attribute – In its simplest form, this fine-grained component corresponds
to a column in a query definition. Data Attributes are associated with Data Sources.
When the Data Source is retrieving data, its Data Attributes receive values for the cor-
responding columns. After a user requests the Data Source to retrieve a row of data,
he is expected to contact its Data Attributes to get the retrieved values. Likewise, for



storing and manipulating data, the user is expected to populate the Data Attributes with
desired values before asking the Data Source to perform the operation. In addition, Data
Attributes respond to a number of Messages for filtering the data source or requesting a
particular sort order. They pass these requests up to their parent Data Source.

Data Attributes have a type hierarchy which determines their features and capabil-
ities. Two of the important Data Attribute types are Primary Key Data Attribute, and
Foreign Key Data Attribute. Primary Key and Foreign Key Data Attributes are required
for data operations like create, update and delete. They let the Data Source know which
set of the data values populated in the Data Attributes should be used to locate the af-
fected data items, and which set should be used to provide the new or updated data.
They also guide the Data Source to enforce various integrity constraints. The type of a
Data Attribute also determines to which requests that Data Attributes can respond. For
example, it determines whether the attribute is updateable or searchable. More com-
plex Data Attributes like the Derived Data Attribute can interface with auxiliary Data
Sources to automatically calculate derived and aggregated values.

Domain – This fine-grained component is used to help guarantee the validity of data
handled by Data Attributes. If a Data Attribute is associated with a particular Domain
component, all requests for writing to or reading from that Data Attribute pass through
the associated Domain component for validation. Each Domain component provides
two services of read and write. In addition to checking validity of values, these two
services can also convert between internal and view-level representations of data val-
ues. For example, thousands separators can be automatically added and removed for
numbers upon reading and writing of the data.

Figure 2 depicts the exchanged messages for an example data retrieval scenario. An
external entity first configures the Data Attributes of a Data Source and then retrieves
one row of information. Some internal messages are not shown.

Domain

Data Attr

Domain

Data Source

1.Sort

4.GetValue Data Attr

3.1.Retrieve

3.1.1.1.1.Result

5.GetValue

2.Filter

DB

3.Retrieve

Data Adapter

3
.1

.1
.1

.R
es

u
lt

3
.1

.1
.R

et
ri

ev
e

Fig. 2. Example data layer interaction



3.3 View Layer

View Page – An XPage application is implemented as a set of View Pages, which are
coarse-grained components. View Pages contain the data-aware View Forms, as well as
some presentation-only components like Icons and Headers.

View Form – View Forms are coarse-grained components with specialized func-
tionalities, yet similar architectures. Typically, each View Form is associated with a
Data Source which serves as the source and/or destination of data. Currently, there are
five types of View Forms, corresponding to the five primitive operations on data: Create
Form, Read Form, Update Form, Delete Form, and Search Form. These components are
packed with common services which are usually required in implementing a data-driven
application. For example a Read Form can automatically present the data in an under-
lying Data Source in grid format or itemized format. It can paginate the data rows, and
automatically change the sort order if the end-user clicks on one of the grid columns.
It also allows users to download its data set as a file. A Search Form can present the
end-user with a data entry form for specifying filter criteria and then pass the filters to
an associated Read Form for displaying the search results. A Create Form can automat-
ically validate user input and warn the user if required entries are missing or invalid.
A Delete Form can consult the integrity constraints in the data model to check for va-
lidity of a delete operation before attempting it. All these services are either provided
by default or specified in configuration files at the conceptual level. These services are
realized by collaboration of a number of common finer-grained components in the View
Forms, which are described below.

View Attribute – These fine-grained components correspond to the individual data-
aware “element types” on a View Form. Each View Form has a number of View At-
tributes. Typically, each View Attributes is connected to some Data Attribute from the
View Form’s associated Data Source. The connection between View Attributes and Data
Attributes is established during component initialization. The type of collaboration be-
tween the View Attribute and the Data Attribute depends in part on the containing View
Form. For example, on a Read Form, View Attributes receive the retrieved data from
corresponding Data Attributes, but on a Create Form, View Attributes send user in-
put value to Data Attributes for storage. View Attributes also respond to some specific
Messages. For example, upon receiving a Filter Message, the View Attribute sends a
filter request to its associated Data Attribute, which in turn is routed to its parent Data
Source. Although View Attributes are more concerned with the logic of data operation,
they also carry some presentational semantics based on their types. For instance, on a
Read Form, View Attributes end up appearing as the header of data columns in the data
grid shown to the user.

View Cell – These are fine-grained components which represent the individual data-
aware elements. A View Cell may represent an individual data entry field on a form, or
an individual value in a grid of displayed data. View Cells are not defined in the con-
figuration files. Rather they are produced at run time during the operation of the View
Forms. For example, on a Read Form, for each retrieved data row the View Attributes
instantiate new View Cells. After retrieving all the rows, a grid of View Cells is formed
which is displayed to the end-user. On data entry and manipulation forms, View Cells
are instantiated during component initialization and are represented as individual data



entry fields on the GUI. All View Cells maintain links to the original View Attributes
that instantiated them to pass the messages they receive.

View Input – These are fine-grained components which represent the user interface
widgets. Every View Cell which represents a data entry input is associated with a View
Input. The type of View Input determines how that View Cell is represented on the user
interface. Example View Inputs are text fields, multi-line text fields, drop down lists,
checkboxes, etc. Since drop downs are heavily used in data-driven applications, they
receive special treatment in the XPage style. By default, any View Attributes linked to a
Foreign Key Data Attribute is represented as a drop down input on the user interface. As
its parameter, the drop down View Input receives the Data Source component matching
the target entity of the foreign key relationship. This enables the drop down input to
display appropriate values from the referenced entity.

View Row Selector – View Row Selectors are fine-grained connectors whose pur-
pose is to receive special filter requests via Select Messages and relay the filter to their
associated Data Attribute. Any View Form can have a number of Row Selectors in ad-
dition to its View Attributes. The effect of sending a Select Message to a Row Selector
is almost the same as sending a Filter Message to an ordinary View Attribute. They
both result in limiting the data rows which are retrieved, or manipulated. However, the
semantic difference is that Row Selectors are used when the View Form’s operation
relies on receiving the message. For example, an Update Form usually needs to work
with an individual data row and refuses to operate if it does not receive a proper Select
Message, because otherwise it may affect unintended data rows.

View Link – View Links are fine-grained connectors which link different View
Pages in an XPage application. Depending on the containing View Form, a View Link
may appear as a hyperlink taking the user from one page to the other, or as a form
submit button. In either case, each View Link carries a number of Message objects.
All communications between components on different View Pages take place through
View Links, and are routed by the Transroute connector. For example, in a book list
page, a View Link can be placed next to each row to allow the end-user to go to a book
update page to modify that book. In this case, a foreign key value is sent to a target Row
Selector in the book update page.

Figure 3 shows some of the view components and connectors involved in this ex-
ample. Notice how the same View Attributes, View Cells, and View Links take different
forms on the two types of View Forms. The View Link appears as a hyperlink on the
Read Form, and as a submit button on the Update Form. When the View Link is on a
data entry form, it also automatically carries the user input as a number of Input Mes-
sages.

View Template – Contrary to what their name suggests, none of the view layer com-
ponents and connectors mentioned so far are concerned with their presentation. Instead,
each visible XPage component or connector is associated with some View Template
component, which is able to “draw” it on the user interface. Standard View Templates
are provided in the XPage framework for all coarse-grained and fine-grained compo-
nents. Developers can customize the presentation of an individual component without
having to provide custom presentations for its contained elements.



ViewCell

ViewCellViewAttr:

ViewAttr:

ViewLink

ViewCell

ViewLink

ViewAttr

ViewCell

ViewCell

Book List

ViewAttr

ViewLink

ViewLink

P
ag

eC
o
o
rd

. Book Update

T
ra

n
sr

o
u
teMessages LoadPage() load

Transition()
Select()

Transition()

R
o
w

S
el

ec
to

r

Fig. 3. Example view layer interaction

3.4 Support Components

Coordinator connectors are responsible for locating and loading other components dur-
ing initialization of the component hierarchy. Based on the type of the requested com-
ponents, Coordinators can decide intelligently whether they can reuse previously loaded
components or not. This is particularly important for sharing Data Adapters for ensur-
ing transactional integrity, as in order to successfully rollback transactions all related
operations on a View Page must be handled by a single Data Adapter. Coordinators can
also facilitate deploying the XPage style in a distributed environment, as they can trans-
parently return stubs for remote components and connectors. Other XPage components
facilitate user authentication, access authorization, navigation, and internationalization.

4 Case Studies

In this section, we briefly discuss some real-world deployments of the XPage style.

4.1 Squash

In [11], Esfahbod et al. use XPage to implement a web-based front-end for configur-
ing an organizational gateway, which gives users controlled access to a set of internally
administered infobases. The front-end allows the end-user to define available infobases
together with a hierarchy of organizational users in different levels and groups. Access
rights can be assigned to individual users or to organizational levels. From the informa-
tion gathered in the database, appropriate configuration files are generated for a squid
web proxy, which acts as the gateway to the actual infobases.

Despite unfamiliarity of this group with the XPage architecture and its framework, it
took their three member team only six person-days to implement Squash. At that time
they used an earlier version of XPage. In that version only the Create Forms offered
drop down View Inputs, and this form of user input was not available in Search Forms.
Since they needed such a feature on their search forms, and they did not want to bother
modifying the XPage framework, they used the extension points as a workaround.
They used a Create Form in place of the Search Form, however they overrode the be-
fore process write extension to cancel the create operation and instead route the user
input messages to the Search Form for being processed as filter criteria.



4.2 BibIS

In 2006, XPage was used to develop a Bibliographic database for the Database Re-
search Group at the Department of Computer Science at University of Florida. The
core functionality of BibIS is to manage bibliographic data on publications. It allows
end-users to manage publication types, enter publication information, and optionally
upload article files. In addition to browsing and searching the publications, BiBIS al-
lows users to generate BibTeX entries for any set of selected publications. Up to this
point, the requirements could be satisfied using nothing but default XPage components
and connectors.

However, the interesting requirement in BibIS was that all the publication attributes
and publication types needed to be dynamically definable by the end-user. We used
the extension points to satisfy this requirement. For the publication entity, an “empty”
Data Source was defined with no Data Attributes. In the before load extension point
of this Data Source, we included custom code to load an auxiliary Data Source on
the table containing publication meta-data. The custom code dynamically added Data
Attributes to the publication Data Source to match the stored meta-data. Using this
approach greatly reduced the complexity of this solution, since all other View Forms
which worked with the publication entity were developed as if the publication table
was a static table. Other extension points were used to update the structure of the actual
publication table as the end-users updated the publication meta-data attributes.

4.3 Ringtone Vending Website

Our last case study is from the deployment of XPage on an Internet website for selling
cell phone ringtones and logos. This system worked on three geographically distributed
servers. A catalog server on the content provider’s site offered web services for getting
information on available content for sale. The web server presented the catalog to the
Internet users and accepted orders. Received orders were sent to a GSM server, which
communicated with the content provider to get the ringtone and then send it to end-
user’s cell phone.

Although there is no intrinsic support for web services in XPage, we used the exten-
sion points on two virtual Data Sources to provide the connection from the web server
to the catalog server and the GSM server. The first virtual Data Source made a web ser-
vice request to the catalog server upon a read request to get the catalog information. The
second virtual Data Source was used as if it was saving user orders. However, instead it
activated local scripts which sent order parameters to the remote GSM server.

A common theme that is seen in all the above experiences is an invariable need for
extensibility in the architectural style. All these systems had requirements which were
not predicted when XPage was designed. This confirms the importance of extensibility
as a key requirement for such a generic software engineering solution.

5 Conclusions

We have presented the XPage architectural style for creating data-driven systems. XPage
facilitates reuse at the code level by offering a conceptual domain-specific language.



However, more importantly, it facilitates reuse at the architectural level by providing an
efficient break down of responsibilities in the generic coarse-grained and fine-grained
components. As part of future work, we are looking forward to presenting the software
engineering challenges that we faced when designing XPage and the guidelines that we
followed to address them.

Our successful experience with XPage shows that it is possible to streamline many
activities involved in design and development of data-driven systems. However, we
believe data-driven systems have much more capacity for reuse and we are looking
forward to seeing more research devoted to discovering techniques and methods for
exploiting this potential.

References

1. Perry, D.E., Wolf, A.L.: Foundation for the study of software architecture. Software Engi-
neering Notes 17(2) (1992) 40–52

2. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in Software
Engineering and Knowledge Engineering 2 (1993) 1–39

3. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (webml): a modeling language
for designing web sites. In: Proceedings of the 9th international World Wide Web conference.
(2000) 137–157

4. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web applications.
IEEE Internet Computing 6(4) (2002) 20–30

5. Vigna, S.: Erw: Entities and relationships on the web. Poster Proc. of Eleventh International
World Wide Web Conference (2002)

6. Vigna, S.: Automatic generation of content management systems from eer-based specifica-
tions. ASE 00 (2003) 259

7. Chen, P.P.S.S.: The entity-relationship model: Toward a unified view of data. ACM Trans-
actions on Database Systems 1(1) (1976) 9–36

8. Sun-Microsystems: Enterprise java beans. http://java.sun.com/ejb/
9. Mattmann, C.A., Crichton, D.J., Hughes, J.S., Kelly, S.C., Ramirez, P.M.: Software archi-

tecture for large-scale, distributed, data-intensive systems. In: WICSA ’04. (2004) 255
10. Mattmann, C.A., Crichton, D.J., Medvidovic, N., Hughes, S.: A software architecture-based

framework for highly distributed and data intensive scientific applications. In: ICSE ’06.
(2006) 721–730

11. Esfahbod, B., Safy-Allah, H.: Squash: Design and implementation of a large scale http gate-
way and masqurader. Internet draft: http://behdad.org/ download/ Publications/ squashdoc/
squash.pdf (2003)


