
An Architectural Style for Data-Driven Systems

Reza Mahjourian

Department of Computer and
Information Science and Engineering

University of Florida
Gainesville, FL 32611, USA

rezam@ufl.edu

Abstract

Data-driven systems and applications are very special-
ized software solutions for acquisition, management, and
presentation of information. These systems are usually de-
veloped using the same software tools, technologies and
processes as any other type of software. Not only is this
approach inefficient, but also it results in extreme redun-
dancies due to the inherently repetitive nature of these ap-
plications. This is while data-driven systems exhibit char-
acteristics which can be exploited for extensive reuse across
a single application or a family of applications. In this pa-
per, we present our experiences over the past six years in
constructing and deploying XPage, an architectural style
and its accompanied development framework, which are es-
pecially designed for data-driven systems. We discuss the
challenges and trade-offs involved in designing XPage, as
well as the lessons that we learned in the process. Sev-
eral case studies are presented to demonstrate XPage’s ef-
ficiency and flexibility for developing real-world solutions.

1 Introduction

Data-driven systems are software solutions for
data/information management. The two primary func-
tions of these systems are information acquisition and
retrieval. Information acquisition is typically performed via
data entry forms or interfacing with external data sources.
Information retrieval is concerned with presenting the
stored information to the user with appropriate navigation
and querying facilities. These systems are also character-
ized by intensive user interactions both during acquisition
and retrieval of information. Data-driven applications are
beyond doubt one of the most common types of customized

software systems in use today. University registration
systems, e-commerce applications, content management
systems, financial and accounting applications, a personal
address book, and an online photo album are a few
examples of data-driven applications.

Despite existence of a consistent demand for new data-
driven systems, they are mostly developed as one-off
projects, with little reuse taking place beyond what is of-
fered by the development technologies and programming
languages used. An observation is support of this fact is that
still the de facto standard for developing web-based soft-
ware solutions, many of which fall under the category of
data-driven applications, is LAMP (Linux, Apache, MySql,
PHP), or one of its variants. It is while data-driven sys-
tems exhibit great potential for extensive reuse, even across
systems developed in completely unrelated domains. Re-
cently, the software industry has introduced some devel-
opment frameworks offering higher level programming li-
braries to help with rapid development of data-driven ap-
plications. However, these frameworks are not high-level
enough to prevent the repetitive nature of data-driven sys-
tems from showing up as nearly identical programming
constructs. Moreover, none of these industrial frameworks
offer an explicit software architecture and the software en-
gineering decisions behind their designs are just buried in
their implementations.

Academic research on producing agile techniques
or methodologies for developing data-driven systems is
severely lacking as well. Software engineering researchers
consider data-driven applications to be in the realm of
database research, because of their concentration on infor-
mation management tasks. Moreover, the seemingly primi-
tive nature of “reading and writing structured data” appears
to be lacking the necessary complexity to qualify as an in-
teresting software research problem. On the other hand,
database researchers have little interest in solving the soft-
ware engineering challenges involved in streamlining devel-



opment and managing the complexity of software systems.
In spite of that, it is quite surprising to know that the very lit-
tle work done in this area comes from the database research
community and not the software research community.

In this paper, we present an architectural style [11, 7]
specifically designed for creating and maintaining data-
driven systems. This architectural style has been extracted
from a framework developed in 2001, and gradually ex-
tended afterwards. We have coined the architectural style
XPage following the name of the original framework. This
architectural style has been field tested on a number of in-
dustrial projects and has proven to be very efficient in terms
of both the development times and ease of maintenance.

Before discussing the XPage style in details, we are go-
ing to review the related work in Section 2. Section 3
outlines the software engineering challenges that we faced
when creating and evolving the XPage framework and ar-
chitectural style. Section 4 presents the architectural style
and its components and connectors. Section 6 discusses the
guidelines that we followed and the lessons that we learned
in the course of designing and deploying XPage. Section 5
provides cases studies from real-world systems developed
based on this style. Finally, Section 7 wraps up the paper
with conclusions.

2 Related Work

A complete framework for developing data-driven appli-
cations should address a wide array of concerns, from pro-
viding efficient data storage and retrieval mechanisms, to
handling complex user interactions in the presentation and
view layer. To our best knowledge, no other architectural
style has been proposed to support development of data-
driven systems to this extent. However, there are some solu-
tions proposed by the database research community which
focus on related problems. Many of these solutions focus on
the idea of developing an entire application based on an ER
(Entity Relationship) model [4], or an augmented version of
it.

The most notable example in this category is WebML
[2, 3]. WebML is a product which provides a model-based
development environment with a database-oriented view for
creating hypertext-based applications. The core of the ap-
plication is created with a “structural model” which outlines
the data model. Special-purpose data-aware “units” or “op-
erations” are devised for data presentation or modification
tasks. A program is created by associating these special
units with the objects defined in structural model. The re-
sult is an appropriate user interface element which can carry
out the desired task. A “navigation model” is used to estab-
lish the links between different pages and content units.

in [12, 13], Vigna proposes a solution based on devel-
oping the entire application out of the Extended ER model.

In their solution, the cardinality constraints on entity rela-
tionships in the ER model are used to infer the appropri-
ate presentation and navigation model of the application.
Their software generates SQL statements necessary for cre-
ating the tables based on this augmented ER model. The
developer is expected to execute the scripts to create the un-
derlying database. User interface forms are also automati-
cally created based on the schema in the ER model. Further
customization of the application should be done by directly
modifying the generated forms afterwards.

Even though the organization of data-driven applications
is mostly influenced by the structure of their underlying data
repositories, ER models lack the expressive power required
to specify the structure and behavior of an entire application
for a variety of reasons. In any data-driven system, a key
factor in designing the navigation and presentation model is
the predefined flow of information according to the under-
lying business processes. This information is not captured
in the ER model. Having a flexible software development
framework requires devising mechanisms for specifying the
business logic and view organization of an application in-
dependently of its underlying data model. Another undesir-
able side-effect of using ER models is that since RDBMS
systems are not directly based on ER models, these ER-
based methods have to assume responsibility for creating
and managing the relational database as well. However,
this is inflexible and counter-productive, since in many real-
world situations there are database experts who prefer to de-
sign and fine tune the database independently. The need for
working with legacy databases poses a similar problem.

Recently, we have seen the introduction of some indus-
trial software development frameworks whose goal is to
enable web developers to create data-driven applications
more efficiently and rapidly. Examples of these frame-
works include Ruby on Rails and CakePHP. The core of
these frameworks is based on the concept of Active Records,
which provide a two-way mapping between object classes
and database tables. Any instantiation or modification of
objects of these types is directly reflected on their associ-
ated tables. Foreign key relationships are exposed in Active
Records by linking object attributes to their related objects.
To capture the logic of an application, these frameworks en-
courage developers to write “controllers” which are service
entry points for user defined operations on the data. How-
ever, there is no support for higher-level components of any
form in the view layer of these frameworks. The “scaf-
folding” technique can be used to rapidly create the view
layer code out of the structure of an Active Record. How-
ever, the produced artifact is low-level code and the rela-
tionship between this code and the original Active Record
can be lost with subsequent modifications to the either arti-
facts. Another major inefficiency with these frameworks is
that the standard mechanism for retrieving data from Active



Records involves traversing them row by row to reach indi-
vidual data objects. This suggests a low-level programming
style, which for most data-driven scenarios can be totally
abandoned for a more high-level view of the “entire data
set”.

None of these solutions address the software engineer-
ing side of the problem. Although these approaches facil-
itate implementation of data-driven applications, their lack
of an explicit architectural design makes it difficult to ana-
lyze these solutions with regard to issues of interest to the
software engineering community. Moreover, since the re-
lationship between implementation-level constructs and the
software components and connectors is not clear, one can
not easily determine their potential for reuse across differ-
ent domains. Nor can one try to formalize a process for de-
signing, implementing, and maintaining the software com-
ponents needed in these solutions. To the contrary, XPage’s
explicit architectural style makes it easier to understand,
adopt, and extend.

Another class of solutions which have been exten-
sively employed in creating data-driven systems are various
middle-ware technologies such as Enterprise Java Beans
[1]. They offer standardized interfaces for accessing and
manipulating data sources. These are accompanied with ba-
sic services such as concurrency, distribution, security and
component naming and registry services. These technolo-
gies can provide the platform for handling the data storage
and retrieval tasks in data-driven systems, and thereby an-
swer one side of the problem. However, they do not offer
specialized solutions for the view layer. Moreover, these
technologies do not suggest any particular configuration for
their surrounding system. The assumption is that develop-
ers use “glue” code to instantiate, utilize and maintain these
object whenever necessary. Despite being flexible, this is
less in line with the spirit of software architectures, which
advocate reuse by formalizing exemplification of good en-
gineering solutions.

In [9, 10] Chris et al. present the OODT reference archi-
tecture, which is an architecture-based solution for locat-
ing data sources and aggregating data from distributed data
providers. Their proposed software components and con-
nectors provide the services of data source registry, identifi-
cation, and querying on top of the industrial middle-ware
technologies. Although OODT components and connec-
tors can be employed for creating data-driven systems, like
middle-ware technologies OODT does not offer any solu-
tion for the view layer of these systems, mainly because its
focus is on a different problem. Abstracting and model-
ing the interactions in the view layer of these applications
is much more complex than modeling the data operations,
which more or less exhibit a straight-forward input output
model. Lastly, like middle-ware technologies, OODT’s so-
lution is “programmer-intensive” [9] as it does not employ

a high-level ADL.

3 Software Engineering Challenges

In this section, we discuss some of the key software en-
gineering challenges that we needed to address when de-
signing XPage. Some of these challenges are not specific
to data-driven systems. However, the specific requirements
and characteristics of systems in this domain necessitate an-
alyzing these issues from a narrower perspective. When
developing XPage, we also needed to understand and ana-
lyze some important trade-offs in design of the components
and the overall architecture of our solution. Our answers to
these issues had a direct impact on the current design of the
XPage.

Efficiency vs. Flexibility – Creating a generic solution
and then claiming that it can be applied to an entire class
of problems is indeed a brave statement. Proper analysis of
any solution would begin with scrutinizing the problem that
it is supposed to address. However, in case of a generic so-
lution, not all usage scenarios can be predicted. This makes
the evaluation of such solutions difficult, since we can not
make statements about the requirements of the scenarios
that we have not encountered yet.

However, in general we could notice a trade-off between
efficiency and flexibility. By efficiency we mean the effec-
tiveness of the architectural style in codifying a data-driven
solution with the least amount of effort. In other words, the
more efficient solutions are, the less they need to be told
how to realize the set of given requirements for a target sys-
tem, as they can automatically infer how to do so. On the
other hand, the more a solution is able to infer the behavior
of an application, the less flexible it becomes, since those
assumptions limit its ability to be applied to systems with
new and different requirements. By flexibility we mean the
extent to which different types of applications with different
requirements can be developed using the framework archi-
tecture.

The trade-off comes from the observation that the more
work a given component does automatically, the more likely
it is that it does something which is not suitable for some
future requirement. Given the great similarities among data-
driven applications, our goal was to increase the efficiency
of the architectural style with as little effect on its flexibility
as possible.

Component/Connector Granularity – Consider any
particular implementation of the components and connec-
tors of an architectural style. Be it a modular or an ob-
ject oriented implementation, one can extract its underly-
ing implementation-level constructs and present them as the
building blocks of an alternative architectural style, which
would have finer-grained components. Obviously, this new
alternative style can be applied to the same problems as



the original style, however, its produced solutions are go-
ing to be less efficient. On the other hand, if certain ar-
chitectural configurations reappear in many parts of appli-
cations created based on some original architectural style,
it can be taken as a sign that the style is not very efficient
and that introduction of additional coarser-grained compo-
nents/connectors to encapsulate the repeatedly used config-
uration can increase the efficiency of the architectural style
in modeling those applications.

Since not all possible scenarios for using an architectural
style can be identified at the time of its design, determining
the optimum component granularity becomes a non-trivial
task. In Section 4 we explain how XPage solves this prob-
lem using a two-level multi-granular architecture.

Inclusion vs. Extension – In object oriented analysis,
two standard idioms of include and extend are well known
for specifying reuse in artifacts like Use Cases. We can ex-
tend these concepts to study relationships between the ser-
vices offered by components or connectors in software ar-
chitectures. More specifically, include can be used to de-
scribe a generalization relationship denoting inclusion of
the service offered by another component. It is like the in-
cluding component invokes the service of the included com-
ponent as part of its own service. Extend can be used to de-
scribe a generalization relationship denoting the extension
of the service of another component. The extending com-
ponent accomplishes this by virtually inserting additional
action sequences into the service of the extended compo-
nent.

Choosing which relationship to use has an influence on
the flexibility and efficiency of the architecture. The cru-
cial difference between these two types of reuse is that the
extended component should have already devised the nec-
essary extension points to allow insertion of additional ac-
tion sequences, but the included component does not need
to make any such provisions. Using include relationships
results in solutions with greater flexibility, as the included
service does not impose any specific architecture on its sur-
rounding system. However, such kind of reuse necessitates
using a lot of glue code to drive the included components
and services. If many of the system’s scenarios are simi-
lar, this creates repetitive code. Middle-ware technologies
usually exhibit the include relationship with their surround-
ing system. On the other hand, using extend relationships
can result in more efficient architectures, as this allows for
packing more functionality in the extensible services with-
out compromising flexibility. Event-based architectures are
a good example of architectures which use the extend re-
lationship. The extend relationship is more in line with the
spirit of software architectures, however the drawback to us-
ing extend relationships is that it increases the complexity
and alleviates the problem of architectural mismatch [6].

We faced this challenge especially when designing the

components and connectors of the view layer. In order to
make the view components as efficient as possible, we pre-
ferred to have them directly interact with the end-user and
the environement. Otherwise, we would have to use repeti-
tive code on every web page to load and instantiate compo-
nents, and to pass user interface events to the components
and to prepare their output for proper presentation to the
end-user. This implied that the components needed to take
care of the entire cycle of their operation from receiving
end-user input from the environment, to processing or re-
trieving the data, to presenting the results back to the end
user. For this, we had to use the extend relationships to
make it possible for developers to intervene with this de-
fault operation cycle and change the default component be-
haviors when necessary.

Native Support for User Interface Development – In-
tensive user interaction is a characteristic of data-driven sys-
tems. On the other hand, user interface design and imple-
mentation is a complex task and takes up a considerable part
of the design and development cycle. However, in data-
driven systems user interactions are primarily concerned
with primitive operations on the underlying data. Because
of the great similarity between all parts of data-driven sys-
tems, using low-level user interface toolkits like Java Swing
in an ineffective solution. An efficient architectural style for
this domain is expected to offer native support for specify-
ing user interfaces. Designing these user interface services
as extensible services in the components and connectors of
the architectural style makes it possible to streamline de-
velopment of many parts of data-driven systems. Extension
points can be used to specialize the basic user interface ser-
vices for more complex scenarios.

High-level Programming Support – Due to the great
similarity different parts of data-driven systems, using low-
level programming languages results in repetitive code for
realizing simple and recurrent requirements like loading
and storing data. Not only conventional programming lan-
guages are inefficient for this task, but also they cause se-
rious problems when it comes to maintaining or evolving
the system. We ideally expect the components and con-
nectors of the architectural style to be programmable us-
ing high-level configuration files. Separating components’
implementation code from the configurations of individ-
ual instances has the advantage that that architecture can
evolve without modifying the applications based on it. In
addition, reusing the implementation and the configuration
is more straightforward once they are completely separate
from each other.

Programmer-Friendly Development Method – From
the programmer’s point of view, it is better for related el-
ements to be stored closer to each other to facilitate writ-
ing and maintaining the code. On the other hand, in order
to avoid repeating common structure and behavior in com-



ponents, we need to “pull up” common functionality and
“pushing down” specialized functionality in the object types
hierarchy. However, this results in separation of otherwise
related defining attributes in components, which is directly
reflected in the component configuration files. Gathering
related items together in configuration files without sacri-
ficing the optimality of component designs is a non-trivial
challenge.

Performance – Architectural styles often introduce ad-
ditional layers of abstraction into the design of a system.
This may have a negative impact on the performance of ap-
plication which follow the style. On the other hand, using
configurable high-level components and connectors incurs
an instantiation and configuration overhead which might de-
grade the system’s responsiveness.

Complexity of Real-World Systems – Real world ap-
plications inadvertently need to deal with issues and re-
quirements including security, user management, authenti-
cation, and internationalization. A successful architectural
style for data-driven systems must offer first-class compo-
nents and connectors to support these requirements.

4 The Architectural Style

In this section, we introduce the XPage architectural
style and its accompanying development framework. Enu-
merating all the components and connectors in the archi-
tecture is beyond the scope of this publication. However,
we try to present the key components and connectors that
constitute the core of the architecture. First we provide an
overview of the style and its key characteristics. We then
proceed to introduce some individual components and con-
nectors.

4.1 Overview

4.1.1 Overall Architecture

An XPage application is comprised of a set of intercon-
nected View Pages. A View Page can be seen as an abstrac-
tion of a web page, or a desktop form. Each View Page, in
turn, contains one or more View Forms. The View Forms
are data-aware components which can directly interact with
the end user. XPage offers different types of View Forms
for common data acquisition, manipulations, and presenta-
tion tasks. Each View Form is connected to one or more
Data Sources. A Data Source abstracts the data model of
the underlying data source or destination. Data Sources, in
turn, are associated with Data Adapters, which are connec-
tors whose function is to provide a consistent interface for
different data repositories available to the application.

XPage components and connectors rely on a predefined
launch and configuration protocol for their operation. Upon

receiving a request for a specific View Page from the end
user, a Coordinator connector locates the corresponding
XML file, and instantiates the View Page component. This
process is repeated for the View Forms in the loaded View
Page and for any other components and connectors refer-
enced in them, including the data layer components. Once
the component and connector hierarchy is loaded, a se-
quence of events are propagated in the hierarchy starting
at the root View Page component. Some of the most im-
portant events are load, init, register, process read, pro-
cess write, commit. Depending on their function, each com-
ponent and connector may do a different task upon receiv-
ing these events. However most components read data from
data repositories upon receiving process read, and write
back data upon receiving process write.

4.1.2 Component and Connector Granularity

The components and connectors of XPage are divided into
two distinct groups, based on their granularity. The coarse-
grained components and connectors, are first-level players
in the architecture of an application. They bundle con-
siderable amount o functionality to make them capable of
handling significant data-driven responsibilities in a data-
driven application. However the XPage style defines these
coarse-grained components and connectors in terms of a
number of common fine-grained components and connec-
tors. The fine-grained components and connectors are gen-
eralizations of the common structural and behavioral con-
stituents of the coarse-grained components. However, these
fine-grained components can not exist independently. For
example, given just enough information on the structure of
an underlying repository, a coarse-grained View Form can
present a data entry form to the user, receive and validate
the user values, and store the values in a data source, all
without any intervention from the developer. However, this
is actually accomplished by cooperation of the constituent
fine-grained components in the View Form. Modeling the
higher-level components in terms of their constituents in-
creases the efficiency of the style, both by streamlining the
development of its framework, and by allowing the devel-
opers to reuse common code between different View Forms
of the same application.

4.1.3 Communication

On another axis, components and connectors are divided
into two categories of view layer and data layer. View
Pages, View Forms, and their associated components and
connectors comprise the view layer of an XPage applica-
tion. Data Sources, Data Adapters, and other fine-grained
components associated with them constitute the data layer
of an XPage application. The communication mechanism



of components and connectors is different for the two lay-
ers. In the data layer, components communicate with direct
synchronous messages. In the view layer, communications
take place by sending asynchronous messages. All view
layer messages go through a universal connector, called the
Transroute connector. The Transroute can locate view layer
components and connectors using their addresses, which are
assigned based on their place in the hierarchy of the appli-
cation. Every component’s address is used as a prefix for
its internal components and connectors. Upon receiving the
register event, the addresses in the component hierarchy is
registered in the Transroute, so that subsequent messages
can be delivered.

Data-driven applications show a set of frequently re-
quired interactions on the user interface. For instance, in
many cases components rely on receiving foreign key pa-
rameters to determine what data to display. In case of
a data entry form, a foreign key parameter must be re-
ceived to establish a relationship between a new data row
and other rows in the database. Other frequent scenarios
are requesting particular sort orders or filters on presented
data. As another example, in most cases data entry forms
present foreign key attributes as drop down boxes which
show entries from the referred table in the relationship. The
XPage provides first-class components and connectors to
support efficient implementation of these features. All of
the above mentioned examples are handled in the XPage
style through sending and receiving special Message ob-
jects between components on the same page, or on different
pages.

Messages can be private or public. Private Messages
have a particular recipient address, while global messages
carry parameter-like values and are available to the entire
component hierarchy. XPage offers a Message type hier-
archy describing all the different messages that can be ex-
changed between the view layer components. All user in-
terface events and all inter-component communications take
place by sending Message objects. Some components and
connectors have specific Message Maps. A Message Map
registers a component’s interest in receiving a specific pri-
vate Message whenever some particular global Message be-
comes available. The private and global messages allow
components to implement “push-”, or “pull-”style commu-
nications, which are both handy in data-driven systems.

4.1.4 The XPage Language

All the coarse-grained and fine-grained components of
XPage are defined using an XML-based domain-specific
language. A set of all such XML files is enough to describe
an XPage application. The enables the developers to reuse
the XML files for the common components and connectors,
and thereby increase the development efficiency and reduce

maintenance costs. The XPage framework is able to virtu-
ally execute the XML files that describe an XPage applica-
tion. In the earlier versions of the XPage framework, the
XML files were translated on the fly into an interpreted lan-
guage. In the current implementation, XML files are loaded
to instantiate and initialize the components and connectors
upon each request. However, an object caching mechanism
is employed to increase the performance of the application.

The existing development framework for XPage is de-
signed specifically for the web platform. Although we
have not yet deployed XPage in a desktop environment, the
view components and the messaging mechanisms are all ab-
stracted away from the web platform in order to make it
possible to deploy the style in other environments.

4.1.5 Extensibility

Clearly, complex applications have requirements which can
not be satisfied with the generic functionalities embedded
in XPage components and connectors. All components and
connectors feature a number of extension points, whose pur-
pose is to allow developers to customize the behavior of
components and connectors. These extension points are
usually associated with the predefined events. There are
two extension points for every event. For example, corre-
sponding to the process write event, there are two extension
points called before process write, after process write. De-
velopers can plug in customized code in these extension
points using the native language of the platform on which
XPage is deployed. These extensions can directly control
the behavior of the components. For example, a data en-
try form can use the after process write extension to make
additional validations and then prevent the component from
storing the data by canceling the process write event.

In the following sections, we describe the XPage com-
ponents and connectors in more detail.

4.2 Data Layer

Data Adapter – This coarse-grained connector is used
to abstract away the heterogeneous interfaces of data repos-
itories in a data-driven system. Whether the data repository
is an RDBMS, an XML file, or a gateway to a remote web
service, appropriate Data Adapters make them available to
the application with a consistent interface for data retrieval
and manipulation tasks. For data retrieval, an abstract query
object is passed to the Data Adapter. This query object con-
tains information about the source of data, the requested fil-
ters on the data, and the requested sort order. It is up to the
Data Adapter to translate the query into a language under-
standable by the underlying data provider. For instance, it
can be translated into a SQL query, an XPath query, or a web
service invocation message. Likewise, for manipulation of



data, the Data Adapter is provided with a target, the criteria
for locating the affected data items, the requested operation,
and a set of new or modified values. Data Adapters also of-
fer transactional services.

Data Source – This coarse-grained component is used to
elevate the flat data representation that Data Adapters deal
with to a hierarchical object model suitable for complicated
interactions that view layer components need. Like Data
Adapters, Data Sources provide data retrieval and manipu-
lation interfaces, however in a more structured manner. As
part of its specification, a Data Source specifies a query ob-
ject which determines the source and destination of the data,
a set of Data Attributes which correspond to the columns in
the query, and a Data Adapter which can interface with the
actual data repository. Data Sources can also enforce vari-
ous integrity constraints.

Data Attribute – In its simplest form, this fine-grained
component corresponds to a column in a query definition.
Any entity which works with a Data Source, must configure
the Data Attributes of that Data Source before requesting
any data operation. For example, for filtering the retrieved
data based on some attribute, a filter message must be sent
to the corresponding Data Attribute of the Data Source. For
requesting the Data Source to store a new data row, all the
Data Attributes are initialized with values and then the Data
Source is asked to store those values as a new data row.
Likewise for retrieving data, the data retrieval request is sent
to the Data Source, and then the values are collected from
the Data Attributes.

The Data Attributes components have a type hierarchy
which determines their features and capabilities. Some of
the important Data Attribute types are Base Data Attribute,
Primary Key Data Attribute, and Foreign Key Data At-
tribute. Most of the time, Data Source queries involve many
joined tables besides a main base table, and only the at-
tributes from the base table are defined of type Base Data
Attribute. Primary Key and Foreign Key Data Attributes are
required for data operations like create, update and delete.
They let the Data Source know which portion of the data
values should be used to locate the affected data items. They
also allow the Data Source to enforce various integrity con-
straints. The type of a Data Attribute also determines to
which requests that Data Attributes can respond. For ex-
ample, it determines whether the attribute is updateable or
searchable. More complex Data Attributes like the Seeded
Data Attribute can interface with auxiliary Data Sources to
automatically calculate derived and aggregated values.

Domain – This fine-grained component is used to help
guarantee the validity of data handled by Data Sources. If a
Data Attribute is associated with a particular Domain com-
ponent, all requests for writing to or reading from that Data
Attribute pass through the associated Domain component
for validation. Each Domain component provides two ser-

vices of read, and write. In addition to checking validity of
values, these two services can also convert between inter-
nal and view-level representations data values. For exam-
ple, thousands separators can be automatically added and
removed for numbers. The XPage framework offers a set of
domains for common data types like dates and numbers. A
generic regex-based Domain component makes it possible
to define new Domains using regular expressions for valida-
tion. More complex Domains can be defined by extending
the interface of the Domain components using native code.

4.3 View Layer

View Page – An XPage application is implemented as a
set of View Pages, which are coarse-grained components.
View Pages contain View Forms, which are data-aware
components, and other independent components which only
aid with the presentation of the page.

View Form – View Forms are coarse-grained data-
aware components with specialized functionalities. Cur-
rently there are five types of View Forms, corresponding
to the five primitive operations on data: Create Form, Read
Form, Update Form, Delete Form, and Search Form. These
components offer common services which are usually re-
quired in implementing a data-driven application. For in-
stance a Read Form can display the data in an underlying
Data Source in a grid-like format. It can paginate the data
rows, and automatically change the sort order if the end user
clicks on one of the grid columns. It also allows users to
download its data set as a CSV file. A Search Form can
ask the end user for filter criteria and pass the filters to an
associated Read Form, thereby reusing the functionality of
the Read Form for displaying search results. A Create Form
can automatically validate user input, and warn the user if
required entries are missing or invalid. A Delete Form can
consult the integrity constraints in the data model to check
for validity of a delete operation before attempting it, and
show appropriate error messages to the end user. All these
services are provided by default. However, since many of
the above services are required in more than one compo-
nent, and also to allow developers to exercise more control
over the behavior of components, the XPage style defines
all the View Forms in terms of a number of common fine-
grained components which are discussed in the following
items.

View Attribute – These fine-grained components corre-
spond to the individual data-aware element types on a View
Form. Most View Attributes are directly connected to a
Data Attribute from some Data Source. The type of collab-
oration between the View Attribute and the Data Attribute
depends in part on the surrounding View Form. For exam-
ple, for a Read Form, after the Read Form sends a query to
the Data Source, it asks the Data Source to load a single row



of data into its Data Attributes. Then the View Attributes
are instructed to collect the data values from the Data At-
tributes. The collected values are stored in View Cells for
presentation on the GUI. This process goes on for all rows
in the query result. View Attributes also respond to some
specific Messages. For example, upon receiving a Filter
Message, the View Attribute routes a request for filtering
the underlying data based on the received values to the Data
Attribute. As another example, on a Read Form, View At-
tributes appear as the header of data columns. A user click
on these column headers sends a Sort Message to the View
Attribute, which is likewise routed to the associated Data
Source.

View Cell – These are fine-grained components which
represent the individual data-aware elements. View Cells
are not definable by the developer. Rather they are produced
at run time during the operation of the View Forms. A View
Cell may represent a data entry field on a form, or an in-
dividual value in a grid of displayed data. The View Cells
have links to the original View Attributes that instantiated
them.

View Input – These are fine-grained components which
represent the user interface widgets. Each View Attribute
is associated with some View Input, which determines how
that View Attribute is presented on the user interface. In
most cases the type of the View Attribute, or its underlying
Data Attribute, can automatically suggest the type of the
View Input, so that developers do not need to specify them.

One of the most important View Inputs in the XPage
style is the Drop Down List. By default, all View Attributes
linked to Foreign Key Data Attributes are represented as
Drop Down Lists on the user interface. The Drop Down List
is automatically given the Data Source component matching
the target entity of the foreign key relationship. This enables
the Drop Down List to show the end user corresponding val-
ues for from the referenced entity.

View Filter – View Filter are connectors whose purpose
is to receive filter requests via special Filter Message objects
and relay the filter to the associated Data Source. While
every View Attribute is capable of filtering the underlying
Data Source, View Filters are useful when the View Form
relies on receiving the filter message for its operation. For
example, an Update Form usually needs to work with an
individual data row, and refuses to operate if it does not
receive a proper Filter Message.

View Link – View Links are fine-grained connectors
which connect different View Pages in an XPage applica-
tion. All inter-page messages are sent through the View
Links. Depending on the containing View Form, a View
Link may appear as a hyperlink taking a user from one page
to the other, or as a form submit button. In either case, each
View Link carries a number of Message objects. A typical
scenario is sending a foreign key as a global Message to a

target View Filter in another page. Another one is sending
user input on a data entry form as a set of Input Messages.

View Template – Each visible XPage component or con-
nector is associated with some View Template for its type.
View Templates determine how the element is displayed on
the user interface. Standard View Templates are provided
in the XPage framework for all objects. This enables devel-
opers to customize the presentation of an individual compo-
nent without having to provide custom presentations for its
contained elements.

4.4 Support Components

Enumerating all the component and connectors in XPage
is beyond the scope of this paper. However we can quickly
mention some of the remaining key players in the XPage
style. Coordinator connectors are responsible for locating
and loading other components during the process of load-
ing the component hierarchy of a View Page. Based on
the type of the requested components, Coordinators can de-
cide intelligently whether they can reuse previously loaded
components or not. This is particularly important for shar-
ing Data Adapters for ensuring transactional integrity, as in
order to successfully roll back transactions, all related op-
erations on a View Page must be handled by a single Data
Adapter. Coordinators also allow for deploying the XPage
style in a distributed environment, as they can potentially
return stubs for remote components and connectors. Secu-
rity in the system is enforced by defining access rights on
components and connectors. An Authentication component
provides the user logon facility. A Navigation component
can dynamically create navigational menus by matching the
set of all available components against the access rights of
the current user. An i18n component allows developers to
provide internationalization support with little effort. All
captions, comments, examples, and other textual informa-
tion on the view layer components are translated through
the i18n component before being displayed.

5 Case Studies

In this section, we introduce some real-world implemen-
tations of the XPage style.

5.1 The Lepidoptera Collection at FLMNH

Florida Museum of Natural History (FLMNH) at Uni-
versity of Florida is home to many research collections and
databases. The Museum possesses over 24 million objects
(specimens, artifacts, materials) in its various collections.
Over the years, different software technologies have been
used to develop data management systems for these collec-
tions. Although these systems have different implemen-



tations, they are quite similar in terms of their functions
and their interfaces, mainly due to the nearly identical fea-
tures of all Museum collection databases. For instance,
most of these systems offer mechanisms for managing spec-
imens/artifacts data, locality information, taxonomic hierar-
chies, and loans.

In summer 2006, XPage was used to develop the Lep-
idoptera (butterflies and moths) collection’s data manage-
ment system. Deploying XPage at FLMNH provided us
with a unique opportunity to compare the performance of
XPage with other software technologies that were used for
developing similar applications in the Museum. We com-
pared the Lepidoptera application with the Ceramics col-
lection application developed in ASP, and the Archeology
collection application developed in Ruby on Rails. Table 1
shows the data that we have gathered on the development of
these three web-based applications.

Despite the common features in all three applications,
each system had to deal with specific requirements. For ex-
ample, the Zooarcheology application was ajax enabled, the
Ceramics application offered complimentary interfaces for
a public web site, and the Lepidoptera application allowed
users to import and export data. In data-driven applications,
the size of the underlying database is a good indication on
the size of the problem. So for each application we counted
the number of tables, the number of fields, and the number
of relationships. Since usually the application store similar
entities in multiple tables for organizational or implemen-
tation reasons, we also counted the number of unique table
types. In order to account for variations in the amount of
functionality offered, we also counted the number of user
interface forms/pages in all three applications. UI Forms
were counted multiple times if they offered more than a sin-
gle operation on data. To capture the size of the solution,
we measured the size of the produced programs. When-
ever possible, we separated the user interface code for the
presentation of the application as well as the configuration
code.

The most notable fact in this comparison is that in the
Lepidoptera application, 92% of total code is just XML con-
figuration files. In fact, this application used only 63 lines
of low-level PHP code in the UI forms. This is the main
reason behind its shorter development time. The bulk of
the implementation of XPage took place in less than seven
days. The remaining time was used for requirements anal-
ysis, database design, and incremental updates due to sub-
sequent requests. In the Archeology application, more than
50% of the time was spent on UI development. Although
this application offered an ajax-enabled UI, it used a con-
sistent and similar UI architecture for all forms, which nat-
urally results in repetitive code. For the Ceramics applica-
tion, we couldn’t separate the presentation code or the con-
figuration code from the other parts of the system, as every-

Table 1. test
Application Ceramic Archeology Lepidoptera

(ASP) (Rails) (XPage)

Tables 37 32 32
Unique tables 26 21 20
Fields 112 477 202
Relationships 35 22 28

UI forms 157 86 152

Total code 36966 loc 7174 loc 4857 loc
1324 KB 285 KB 183 KB

Presentation None 4101 loc 300 loc
None 186 KB 14 KB

Configuration None 269 loc 4494 loc
None 10 KB 166 KB

Development time 5 months 5.5 months 1.5 months

thing is mixed up in the ASP files. Aside from the shorter
development time, the XPage application has the advantage
that developers work with XML configuration files which
are more readable, more reliable, and more maintainable
than low level code used in the alternative solutions.

The relatively higher number of fields for the Archeol-
ogy application is due to maintaining four nearly identical
copies of the main artifacts table (45 fields) for each sub-
collection. In addition, another table with 22 columns is
replicated 8 times for implementation purposes. It is while
in the other two applications, the replicated tables have 1-2
fields only.

5.2 Squash

In [5], Esfahbod et al. use XPage to implement a web-
based front-end for configuring an organizational gateway
giving users controlled access to a set of internally admin-
istered infobases. The front-end allows end users to de-
fine available infobases together with a hierarchy of or-
ganizational users in different levels and groups. Access
rights can be assigned to individual users or to organiza-
tional levels. An offline cron job processes the information
in the database and generates suitable configuration files for
a squid web proxy which acts as the gateway to the actual
infobases.

Despite unfamiliarity of this group with the XPage ar-
chitecture and its framework, it took their three member
team only six person-days to implement Squash. At that
time, only the Create Forms offered Drop Down Lists, and
this form of user input was not available in Search Forms.
Since they needed such a feature on their search forms, and
they did not want to bother modifying the XPage frame-
work, they used the extension points as a workaround. They
used a Create Form in place of the Search Form, however
they override the before process write extension to cancel
the create operation and instead route the user input mes-



sages to the Search Form for being processed as filter crite-
ria.

5.3 BibIS

In 2006, XPage was used to develop a Bibliographic
database for the Database Research Group at the Depart-
ment of Computer Science at University of Florida. The
core functionality of BibIS is to manage research publica-
tions. It allows end users to manage publication types, enter
publication information, and optionally upload actual arti-
cle files. In addition to browsing and searching the publica-
tions, BiBIS allows users to produce BibTeX entries for any
set of selected publications. These requirements could be
implemented using nothing but default XPage components
and connectors.

However, the interesting requirement in BibIS was that
all the publication attributes and publication type attributes
needed to be dynamically definable by the end user. Again,
we used the extension points to satisfy this requirement. An
empty Data Source was defined with no Data Attributes for
the publication entity. In the before load extension point of
this Data Source, we included custom code to load an aux-
iliary Data Source on the table containing publication meta-
data and initialize the publication Data Source according to
the user defined attributes. This allowed for containing the
complexity of this solution. All View Forms which worked
with the publication entity were developed as if the publi-
cation table was a static table. Other extension points were
used to update the structure of the actual publication table as
the end users added/removed the meta-data on publication
attributes.

5.4 Ringtone Vending Website

Our last case study is from the deployment of XPage on
an Internet web site for selling cell phone ringtones and
logos. This system worked on three geographically dis-
tributed servers. A catalog server on content providers site
offered web services for getting information on available
content for sale. The web server presented the catalog to
the Internet users and accepted orders. Received orders
were sent to a GSM server, which communicated with the
content provider to get the ringtone and then send it to end
user’s cell phone.

Since the standard View Templates produce a simple
look and feel for the components, we used custom View
Templates to produce a suitable presentation for a public
web site. Although there is no intrinsic support for web ser-
vices in XPage, we used the extension points on two virtual
Data Sources to provide the connection from the web server
to the catalog server and the GSM server. The first vir-
tual Data Source made a web service request to the catalog

server upon a read request to get the catalog information.
The second virtual Data Source was used as if it was sav-
ing user orders. However, instead it activated local scripts
which sent order parameters to the remote GSM server.

A common theme that is seen in all the above experi-
ences is a need for extensibility in an architectural style. All
these systems had requirements which were not predicted
when XPage was designed. This confirms the importance
of extensibility as a key requirement for any generic soft-
ware engineering solution.

6 Guidelines and Lessons Learned

In this section, we present some guiding principles that
we either followed, or later learned that we should have fol-
lowed from the beginning in the process of designing the
XPage style. Some of these decisions were made after trial
and errors in the gradual process of evolving the XPage’s
accompanied framework. It would be very difficult to quan-
tify some of these statements, as it is impossible to change
only one dimension of such a solution and compare it with
other alternatives. Nevertheless, we list them here as our
guiding principles.

Separation of Concerns – The early prototypes for
XPage were based on View Forms only. Apparently, a sin-
gle data entity appears on multiple View Forms, for exam-
ple when it needs to be updated, browsed, or created. So,
we had to repeat the textual attributes like caption and com-
ments on all View Forms containing that data entity. This
led us to designing additional constructs to hold those com-
mon values. The structure of these additional constructs
turned out to very much resemble the current Data Sources.
A similar pattern led us to develop the View Templates in an
effort to reuse components presentations despite their differ-
ent inner workings. The current architecture of XPage more
or less follows the Model-View-Controller (MVC) [8] pat-
tern. In turns out that we could have shortened the number
of iterations by strictly following the MVC pattern from the
beginning.

Bottom-up Development of the Style – Although no
one single instance can represent the requirements of all
systems in a class, having one instance is better than hav-
ing none. The original XPage framework was developed for
a single system and was later evolved for developing each
new system. Many of the design challenges do not show up
in hypothetical “hello world” style applications. The lab-
oratory generated sample applications tend to focus on ex-
ercising all the features offered in the solution. It is while
real-world applications show non-uniform distributions for
feature requests, which is a key factor for optimizing the so-
lution’s efficiency by a taking appropriate design decisions.

Repeating Database Integrity Constraints in the Ap-
plication – We needed to properly identify invalid data op-



erations before attempting them on the data repository to
give the end user better error messages. Also, many view
layer components could automatically configure themselves
if they could have more information on the data attributes
that they presented. For example, a foreign key attribute is
automatically represented as a drop down list, and an Up-
date Form can automatically configure View Filters for all
the primary key attributes in its underlying Data Source.
Adding “hints” here and there to guide these feature grad-
ually materialized into a copy of all integrity constraints in
the design of Data Sources. These constraints also have
the benefit that they can protect against developer errors.
For example, a Delete Form by default refuses to attempt
a delete operation if its embedded View Filters have not
received proper messages, which prevents the component
from executing a “delete all”.

Multi-Granular Components and Connectors – De-
scribing the fine-grained components and connectors which
operate inside the coarse-grained components has had nu-
merous advantages. These include increasing the devel-
oper’s understanding of the style, streamlining reuse in
the implementation of the architectural style’s development
framework, allowing for reuse in the application domain
through copying partial component configurations, decreas-
ing copy-and-pasting errors due to the similarity between
definition languages of similar constituents, and finally giv-
ing developers the ability to choose the right tool for the
right job – use coarse-grained solutions for typical scenar-
ios, and configure fine-grained solutions for the few com-
plex requirements.

Making Common Scenarios Easy and Complex Sce-
narios Possible – Based on the experience with deploying
XPage in real-world systems, we have tried to tailor the de-
fault behavior of View Forms in favor of the typical sim-
ple data entry and presentation tasks. So, instead of rely-
ing on developer for correctly configuring the appropriate
fine-grained components to achieve the desired function, we
have configured the default View Forms such that in most
cases no customization is needed. On the other hand, devel-
opers can exercise a lot of control over the View Forms by
manually adding or removing fine-grained components and
connectors, and by plugging in extra code in the extension
points.

Programmer-Oriented Development – One of the in-
teresting features of XPage language is that it allows devel-
opers to have some degree of flexibility in deciding the orga-
nization of component configurations in XML files. Wher-
ever a containing component needs to include another com-
ponent, the developer has the freedom to provide the con-
figuration of the contained component inline or use a refer-
ence to an existing configuration file. For example, the de-
scription of the Data Source of an Update Form can be pro-
vided entirely inside the <datasource> tag, or this tag

can use the ref attribute to reference an external XML file
for the Data Source. This is easily made possible by the Co-
ordinator connectors, as all requests for loading contained
components is handed over to Coordinators. Although for
large enough systems, we ideally expect to use external ref-
erences to avoid repetition of configurations, this flexibil-
ity enables developers to start writing “lousy” configuration
files when prototyping or for small applications, and then
later enhance the organization if needed. Another aspect of
XPage’s programmer-oriented guiding principles is that it
uses the native language of the target platform for defining
the extension points, instead of inventing a new high-level
language.

Handling Conventions and Defaults – Another axis of
flexibility is in defining structural and behavioral attributes
in related components. For example, a View Attribute
should have a caption, which appears next to it on the user
interface. The caption can be defined as an XML attribute in
the View Form’s configuration file. However, XPage has a
convention that View Attribute will receive the caption from
their associate Data Attribute, if they are not explicitly given
one. Likewise, the Data Attributes can use a caption defined
in the associated Domains. So although logically the cap-
tion belongs on the View Attribute, developers can define
it in lower levels to increase reuse. As another example,
XPage has the convention that a View Attribute is automati-
cally associated with the Data Attribute which has the same
name, if it is not associated explicitly. These conventions al-
low developers to lower the size of the configuration files in
addition to simplifying the maintenance of the application.

7 Conclusions

We have presented the XPage architectural style, and dis-
cussed the software engineering challenges that we faced
during its design. Data-driven systems are relatively un-
studied by software researchers due to their imagined low
complexity. Our successful experience with XPage shows
that it is possible to streamline many activities involved in
design and development of data-driven systems. However,
we believe data-driven systems have much more potential
for reuse and we are looking forward to seeing more re-
search devoted to discovering techniques and methods for
exploiting this great potential.

References

[1] Enterprise java beans. http://java.sun.com/ejb/.
[2] S. Ceri, P. Fraternali, and A. Bongio. Web modeling lan-

guage (webml): a modeling language for designing web
sites. In Proceedings of the 9th international World Wide
Web conference on Computer networks : the international
journal of computer and telecommunications netowrking,



pages 137–157, Amsterdam, The Netherlands, The Nether-
lands, 2000. North-Holland Publishing Co.

[3] S. Ceri, P. Fraternali, and M. Matera. Conceptual modeling
of data-intensive web applications. IEEE Internet Comput-
ing, 6(4):20–30, 2002.

[4] P. P.-S. S. Chen. The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database Sys-
tems, 1(1):9–36, 1976.

[5] B. Esfahbod and H. S. Allah. Squash: Design and imple-
mentation of a large scale http gateway and masqurader.
Internet draft: http://behdad.org /download /Publications
/squashdoc /squash.pdf, 2003.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In ICSE ’95: Proceedings of the 17th international confer-
ence on Software engineering, pages 179–185, New York,
NY, USA, 1995. ACM.

[7] D. Garlan and M. Shaw. An introduction to software archi-
tecture. Advances in Software Engineering and Knowledge
Engineering, 2:1–39, 1993.

[8] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view controller user interface paradigm in smalltalk-
80. J. Object Oriented Program., 1(3):26–49, 1988.

[9] C. A. Mattmann, D. J. Crichton, J. S. Hughes, S. C. Kelly,
and P. M. Ramirez. Software architecture for large-scale,
distributed, data-intensive systems. In WICSA ’04: Pro-
ceedings of the Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA’04), page 255, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] C. A. Mattmann, D. J. Crichton, N. Medvidovic, and
S. Hughes. A software architecture-based framework for
highly distributed and data intensive scientific applications.
In ICSE ’06: Proceeding of the 28th international confer-
ence on Software engineering, pages 721–730, New York,
NY, USA, 2006. ACM.

[11] D. E. Perry and A. L. Wolf. Foundation for the study of soft-
ware architecture. Software Engineering Notes, 17(2):40–
52, 1992.

[12] S. Vigna. Erw: Entities and relationships on the web. Poster
Proc. of Eleventh International World Wide Web Conference,
2002.

[13] S. Vigna. Automatic generation of content management sys-
tems from eer-based specifications. ase, 00:259, 2003.


