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Abstract

Data-intensive systems and applications transfer large
volumes of data and metadata to highly distributed
users separated by geographic distance and organizational
boundaries. An influential element in these large volume
data transfers is the selection of the appropriate software
connector that satisfies user constraints on the required
data distribution scenarios. Currently, this task is typically
accomplished by consulting “gurus”, who rely on their in-
tuitions, at best backed by anecdotal evidence. In this pa-
per we present a systematic approach for selecting software
connectors based on eight key dimensions of data distribu-
tion that we use to represent the data distribution scenarios.
Our approach, dubbed DISCO, has been implemented as a
Java-based framework. The early experience with DISCO
indicates good accuracy and scalability.

1 Introduction

Data volumes in modern software systems are growing
by orders of magnitude. Companies such as Google are in-
dexing 10s of billions of records; electronic DVD distribu-
tion software is providing 1000s of movies which range in
size from traditional DVD containing gigabytes of data to
higher resolution (dual-sided) DVDs to users across the in-
ternet; scientific data systems are collecting large amounts
(terabytes) of data from high resolution scientific instru-
ments and distributing that data to users around the world
[6, 9].

Though the management of large amounts of data has
been dealt with practically for some time (e.g., credit card
companies such as VISA routinely handle hundreds of bil-
lions of transactions every day), and has already garnered
a lot of attention from the database research community,
one important aspect of these data-intensive systems is that
they are not closed-loop systems. In the past, because the

data systems were closed loop, there were never stringent
requirements on the distribution of data from them.1 Today,
however, with the increase in network bandwidth, and with
the lower costs of computer hardware (particularly storage
hardware), it is regularly expected in such environments that
if the system collects data, it must also distribute it.

The preceding statement begets the question: how do we
distribute such voluminous data sets in a manner that is per-
formant, and that adheres to a user’s requirements as well
as the overall data system architecture? There are a num-
ber of available off-the-shelf (OTS) technologies that claim
to handle large scale data movement, including commercial
(Bittorrent, SOAP/Web Services) and open source (UFTP,
GridFTP, bbFTP) technologies.

If we ask ourselves “which technology is the most ap-
propriate?” we must qualify the scenarios in which a data
movement technology is appropriate. As an example, we
must understand if a data movement technology is appropri-
ate in larger volume scenarios, across the WAN; in medium
volume scenarios, adhering to many users, user types, and
data types; in larger volume scenarios, but over a single
interval, across the LAN; and so on. These types of ques-
tions imply the need for a language for describing data dis-
tribution scenarios. Additionally, there must be a way of
understanding how the available OTS data movement tech-
nologies map to the distribution scenarios described by the
designers of data distribution systems.

The study of software architecture [13, 15] can aid us in
handling the latter problem. A software architecture con-
sists of components (the units of computation in a software
system), connectors (facilities that model the interactions
between software components), and configurations (assem-
blages of components and connectors, and the rules that
guide their composition) [11]. Software connectors provide
us with appropriate modeling facilities for large scale data

1For exposition purposes, we use the terms data distribution, data
movement and data dissemination interchangeably throughout the paper



distribution technologies (which we refer to as “data distri-
bution connectors”, or “distribution connectors” for short).

The consequences for improperly selecting a connector
are substantial. Imagine a situation in which a software
architect assembling the architecture of a movie distribu-
tion service decides it appropriate to use HTTP/REST (a
client/server connector) as the primary distribution connec-
tor to the outside world. This bodes well for customers who
periodically log onto the movie distribution site and down-
load one or two movies. However, the primary advertised
benefit of the movie distribution service is a feature that af-
fords a user the ability to subscribe to genres of movies she
is interested in, and have the movie delivered to her desk-
top incrementally whether she is physically present or not.
These type of requirements imply the need for an event-
based or peer-to-peer distribution connector (as oppossed to
client/server), supporting asynchronous stream delivery and
aperiodic distribution. In order to augment the HTTP/REST
connector with these types of capabilities, a substantial en-
gineering effort would be required.

However, in most organizations, the architect for the
movie distribution service would not have made such a sub-
tle error when selecting the appropriate software connec-
tor. This is due to the fact that most organizations that dis-
tribute large amounts of data have one or two data distribu-
tion“gurus”, individuals who have built many types of these
distribution systems, and know what the right connector to
select is, from experience. Such gurus would have easily
spotted the fact that HTTP/REST bears no native support
for aperiodic, subscription-based data delivery (or would
they have?). Unfortunately, there are two major problems
with these gurus, namely: (1) they are few and far between,
and when they leave an organization, so does their knowl-
edge; and (2) they cannot explain in detail why or how they
made the connector selection, choosing instead to point out
past experience and similar systems built.

In our recent work we have leveraged one of the
widely accepted models of software connectors, proposed
by Mehta et al. [12] to classify distribution connectors us-
ing standard metadata. Using these classifications, we have
developed complementary selection algorithms that map the
connectors (and their metadata) to data distribution scenar-
ios, and that map system performance requirements to both
the connectors and scenario dimensions. Our framework,
dubbed DISCO (for Data-Intensive Software COnnectors),
has been implemented as a Java-based API and tool suite,
and has proved valuable in providing a means for formally
understanding the relationship between different data distri-
bution scenarios and the connector technologies that exist.
We view this to be an important initial step in alleviating
the need to rely on organizational gurus to make such de-
cisions. To date, we have used DISCO as a means for se-
lecting connectors for 30 real world distribution scenarios

that have emerged from projects in which we have partici-
pated at NASA’s Jet Propulsion Laboratory (JPL). The early
results indicate that DISCO is accurate and scalable.

The rest of this paper is organized as follows. Section
2 describes background and related work in understanding
software connectors, and the issues that exist between se-
lecting, and using them to satisfy user requirements. Sec-
tion 3 describes the DISCO framework for software con-
nector classification and selection using a small illustrative
example. Section 4 presents our preliminary evaluation re-
sults obtained using DISCO. Section 5 discusses those re-
sults and concludes the paper.

2 Background and Related Work

Our work is influenced by several areas of existing re-
search, including classifying and selecting software compo-
nents and connectors, and studies of middleware technolo-
gies. We survey representative examples of related work in
each of these areas below.

Our principal source for the classification of software
connectors to date has been the taxonomy of software con-
nectors by Mehta et al. [12]. Although other works pro-
vide a theoretical foundation for software connectors (e.g.,
[1, 14]) our work within DISCO on classifying distribution
connectors has drawn heavily from this taxonomy.

Several approaches for the selection of COTS compo-
nents have been developed over the past: we consider three
of them that are most closely related to our own approach
below.

The approach by Mancebo et al. [7] focuses on selecting
COTS components during the architecture design phase of
software development. The authors focus on three key trade
dimensions that are important in selecting COTS compo-
nents in an architecture: (1) requirements satisfaction, (2)
architectural assumptions, and (3) provided and required
COTS component functionality. They construct matrices
that evaluate COTS components for an exact fit along these
three dimensions, and use that data to guide the selection.
The approach relies on the knowledge of the “key architec-
tural assumptions” that a component makes. Our approach
considers similar trade dimensions; however, in contrast to
Mancebo et al., our approach uses the connector informa-
tion as a means of ranking connectors, allowing comparison
of “how well” a connector fits a particular scenario.

Alves et al. [2] developed a goal-based quality model ap-
proach for assessing COTS components, and their applica-
bility to the architecture of a software system. Similar to our
score-based algorithm discussed below, their approach re-
quires the definition of “quality functions” that map a user’s
satisfaction of a particular COTS component to a given goal
or requirement for the system. In contrast to our approach,
this approach is entirely black box.



We have recently completed a prototype study that in-
tegrated DISCO with a framework for COTS component
selection for interoperability assessment [3]. In our study,
we developed a COTS component and connector selection
approach that utilized COTS definition models and integra-
tion assessment rules to determine COTS components that
could be applied to implement architectures, increasing the
chances of interoperability with other components in the
system.

Middleware and software bus [10] technologies have of-
ten been thought of as implementation-level artifacts of ar-
chitectural connection evidenced by the fact that many data
distribution connectors (e.g., OODT [9], GridFTP) are im-
plemented by leveraging capabilities from existing middle-
ware technologies. Although there have been several recent
attempts to classify and compare middleware technologies
(see Emmerich [4], Zarras [17]), that work has been very
broad. Our work on DISCO provides a systematic approach
for classifying how different connectors affect the data dis-
tribution application family, and for selecting connectors to
satisfy data distribution scenarios along their specific di-
mensions.

3 DISCO: A Framework for Connector Clas-
sification and Selection

In this section, we will first describe the DISCO frame-
work. We will then present a small illustrative example
highlighting the need for DISCO’s automated connector se-
lection. The section concludes by describing two connector
selection algorithms that we have devised. The first is a
black box approach focusing on a connector’s relationship
to four performance dimensions: consistency, efficiency,
scalability, and dependability. The second is a white box
approach that relates the DCP information about a connec-
tor to the scenario dimensions, including the performance
requirements.

3.1 Framework Overview

To perform connetor selection in DISCO, a user specifies
a data distribution scenario as input into the framework.
Each distribution scenario is a set of constraints on one or
more of eight key architectural dimensions of data distribu-
tion. The eight dimensions were identified via a thorough
literature study (see [8] for a full survey), and in the con-
text of our own experience on the OODT project construct-
ing data distribution systems for planetary science and can-
cer research at NASA’s Jet Propulsion Laboratory (JPL) [9].
The eight dimensions are:

1. Total Volume - the total amount of data that needs to be
transferred from providers to consumers of data.

2. Delivery Intervals - the number, size and frequency
(timing) of intervals within which the data should be
delivered.

3. Performance Requirements - any constraints and re-
quirements on the consistency, efficiency, scalability
and dependability of the distribution scenario.

4. Number of Users - the number of unique users to
whom data volume needs to be delivered.

5. Number of User Types - the number of unique user
types (e.g., scientists, students) to whom the data vol-
ume needs to be delivered.

6. Data Types - The number of different data types (e.g.,
stream, header, metadata) that are part of the total vol-
ume to be delivered.

7. Geographic Distribution - The geographic location of
the data providers and consumers.

8. Access Policies - The number and types of access poli-
cies in place at each producer and consumer site.

A data distribution scenario in DISCO is expressed as a
constraint query against the above dimensions. Examples
of constraint queries (i.e., distribution scenarios) include:

TotalV olume = 100GB ∧NumUsers = 10000 (1)

TotalV olume ≥ 50GB ∧NumUsers = 100 ∧
DeliverySchedule.NumIntervals = 2 (2)

Distribution scenarios can be expressed using ranged and
discrete values, depending upon whether the dimension is
a number (e.g., TotalVolume), or a string (e.g., Geograph-
icDistribution). We have found this representation to be
sufficiently expressive. It was derived from direct contact
with scientists in different domains at JPL, and from a re-
view of the available literature on data distribution.

Users input a distribution scenario into DISCO, and then
DISCO is tasked with deciding what available connectors
will suit the given scenario. This is accomplished by main-
taining a knowledge base of distribution connector profiles
(or DCPs). The DCPs contain metadata described by Mehta
et al. [12], including: (1) data access metadata - infor-
mation including locality, number of receivers/senders, and
transient availability; (2) stream metadata - information in-
cluding bounds, buffering, and throughput; and (3) distrib-
utor metadata - information including naming, delivery se-
mantics, and routing. New DCPs are added by architects as
new connectors become available.

DISCO uses the DCP information coupled with the dis-
tribution scenario as input to a Selector component. We
have chosen to make the selector an interface, so that de-
velopers can create their own selection algorithms, allow-
ing them to devise new selection approaches that relate the
scenario dimensions to the available connector information.



3.2 Motivating Example

To motivate DISCO’s automated connector selection ca-
pability, we will revisit the construction of a movie distribu-
tion system from Section 1. The architecture of such a sys-
tem is shown in Fig. 1. The digital movie archive consists
of a DigitalMovieRepository that stores the physical movie
files in AVI or MPEG format, a DigitalMovieCatalog that
stores metadata information about a movie, including in-
formation about its genre, director, and cast. The repository
and catalog are fronted by APIs that allow access to the both
the movie data and its metadata. A BackupSite periodically
connects to the DigitalMovieRepository to backup its movie
data and metadata. InterestedUsers are the observable cus-
tomers of the system: they expect the ability to both down-
load movies at their own request, and have movies delivered
to them by subscription mechanisms using the movie meta-
data as criteria for inclusion.

Envisage that the architect building the system has de-
cided by examining various trade articles, documentation,
and mailing lists, that four data distribution connectors are
appropriate to consider given the requirements of the sys-
tem: GridFTP, Bittorrent, HTTP/REST, and FTP. There
are at least three distinct distribution scenarios that can
be extrapolated from the architecture of the system. The
first scenario (representing the movie backup activity) can
be expressed in human readable fashion as periodic de-
livery of terabytes of data across the WAN to 1 user. In
turn, this can be translated into DISCO using the con-
straint query, DeliverySchedule.NumIntervals = 1 ∧
TotalV olume > 1 TB ∧ GeographicDistribution =
WAN ∧ NumUsers = 1. The other two scenarios rep-
resent the aperiodic and periodic movie deliveries to Inter-
estedUsers.

Even with just three scenarios, manual connector selec-
tion becomes unweildy. A reasonable idea would be for
the architect to choose the connector that allows her to han-
dle all three distribution scenarios: a connector support-
ing (a)periodic delivery, terabytes of data, and thousands
of users. In that case, documentation suggests that GridFTP
supports all three scenarios, except for aperiodic deliver-
ies. Aperiodic deliveries are the cornerstone of the business
model for the movie distribution company though, hence
they must be supported. A quick examination of the actual
scenario constraints leads the architect to realize that, with-
out a clear way to rule out the other three connectors besides
GridFTP, for each connector she must, examine between 4
to 6 scenario constraints (up to eight depending upon the
level of specificity), and determine how well (if at all) each
connector handles the scenario as a whole.

In the worst case, the architect for the movie distribution
system will have to evaluate 32 scenario dimensions for the
four connectors (eight scenario dimensions times four con-
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Figure 1. High level architecture of a movie
distribution system.

nectors), a seemingly small number, there are several subtle
complexities: (1) constructing a connector evaluation ma-
trix comprising 32 requirements to check is a large enough
decision matrix in its own right, and the addition of each
connector into the decision problem introduces up to eight
more requirements to check; (2) the satisfaction of the sce-
nario requirements denoted by the columns in the matrix
may be difficult to discern without extensive empirical eval-
uation; and (3) even if the architect is able to choose the
right connector(s), the critical information of why and how
the connector was deemed to satisfy the requirement re-
mains inside the architect’s head, yielding yet another guru.

In the remaining section, we summarize two connector
selection algorithms that are part of DISCO that deal with
these stated complexities accurately and efficiently.

3.3 Connector Selection Algorithms

The different subsets of our team have independently de-
veloped two connector selection algorithms to date: score-
based and Bayesian.The Score-based connector selection
algorithm takes a black-box approach to selecting connec-
tors. To use the algorithm, architects develop score func-
tions comprised of discrete, known points relating a par-
ticular distribution scenario dimension to the performance
requirements on the scenario (recall dimension 3 in Sec-
tion 3.1). As an example, an architect may define a score
function relating the NumUsers dimension with the effi-
ciency performance requirement using a few empirically
determined performance points for a given connector. Func-
tions derived from these points for a subset of the connec-
tors in our knowledge base are shown in Fig. 2.

In all, there can be 28 score functions for each connec-
tor (seven dimensions excluding dimension 3 times the four
performance requirements). To compute a rank for each



Figure 2. Sample score function relating Nu-
mUsers and efficiency.

connector, the algorithm iterates over all the connectors. For
each connector, sums are computed corresponding to the
performance requirements of interest. For each sum, the al-
gorithm iterates over the seven scenario dimensions. If there
are score functions defined for the connector for the given
performance requirement and scenario dimension, then the
function is evaluated (using the distribution scenario value
for the function’s dimension) and the resultant value added
to the corresponding sum. Finally, for each of the connec-
tors, a weighting function (provided as input to the algo-
rithm) is used to influence each of the sums, allowing a user
to define her interest in the performance requirements. As
an example, the user may choose an objective function that
maximizes consistency while neglecting efficiency.

The Bayesian [16] selection algorithm takes a white-box
approach to connector selection. Its goal is to use a con-
nector’s architectural metadata (provided by its DCP) as a
means of relating the scenario dimensions to a connector.
The Bayesian algorithm takes as input a domain profile (the
equivalent of a conditional probability table [16]) that cap-
tures an architect’s knowledge of the relationship between
the DCP metadata and the values for scenario dimensions.

As an example, consider a distribution scenario in which
the TotalV olume ≥ 100TB. Additionally, assume that
we are given DCPs for two connectors, A and B, and that
we are interested in the data access transient availabil-
ity metadata attribute, specifying whether a connector has
Session-based, Cache-based, or Peer-based access to data.
The Bayesian algorithm allows an architect to favor Cache-
based data access, which is faster and more scalable than the
other two alternatives. An architect may encode this knowl-
edge by assigning the probability value 0.85 to any con-
nector that has Cache-based data access, 0.30 to connectors
that exhibit Peer-based access, and finally 0.10 to connec-
tors that have Session-based. This information would be
recorded as shown in Table 1.

Table 1. Example domain profile knowledge
for the Bayesian algorithm.

Data access transient
availability

TotalV olume ≥
100 TB

. . .

Cache 0.80 . . .
Peer 0.30 . . .
Session 0.10 . . .

For each attribute of each DCP, the algorithm computes
the value range for the attribute, and applies the discrete ver-
sion of Bayes theorem [16] to arrive at a probability distri-
bution for each value, for each attribute. The probabilities
corresponding to the attribute value for each DCP are ag-
gregated through multiplication to formulate a set of final
probabilities for each DCP. These are, in turn, used to rank
and compare the connectors of interest.

4 Preliminary Evaluation

In order to evaluate both our capacity to capture connec-
tor profile knowledge and the ability of each selection algo-
rithm to accurately classify connectors appropriate to given
distribution scenarios, we performed a precision-recall anal-
ysis against an answer key agreed upon by a number of ex-
perts. Our experiment conducted involved the use of 13
DCPs, including canonical profiles we built for the ma-
jor distribution connectors GridFTP, bbFTP, Bittorrent, and
HTTP/REST. The DCPs were constructed by examining
documentation for each of the connectors including expert
reviews, research literature, and from our own experience.
For the score-based algorithm, 24 score functions were de-
fined for each of the 13 connectors: we omitted the defi-
nition of score functions for Access Policy as we are still
solidifying its value representations. For the Bayesian algo-
rithm, a Bayesian domain profile consisting of 100 condi-
tional probabilities was used.

4.1 Precision-Recall Analysis

Each of DISCO’s algorithms was run against 30 real
world distribution scenarios, including 10 high volume sce-
narios, 11 medium volume, and 9 low volume scenarios,
with appropriate variations in each of the eight scenario di-
mensions (number of users and users types, WAN vs. LAN,
etc.). Using our collective domain knowledge, we devised
an “answer key” ahead of time in which we classified each
connector analyzed into one of two classes: appropriate for
the scenario or inappropriate.

In evaluating DISCO’s algorithms for connector selec-
tion, we preformed precision-recall analysis in order to



measure error rate (an estimate of the probability of cor-
rectly labeling a connector as appropriate for a scenario),
recall (the probability of detecting a connector as appropri-
ate for a scenario), and precision (the fraction of selected
connectors which are actually appropriate for a scenario).

Table 2. Precision-Recall Confusion Matrix
Bayesian score-based

True Positives (TP) 101 63
False Positives (FP) 25 200
True Negatives (TN) 245 67
False Negatives (FN) 19 60

Results from both algorithms were further classified into
appropriate and inappropriate connectors via an exhaustive
implementation of the k-means clustering algorithm (k=2).
Comparing these results to our answer key, we produced the
confusion matrix presented as Table 2. Error rate, precision,
and recall were calculated from this confusion matrix and
are presented in Table 3.

Table 3. Precision-Recall Experiment Results
Bayesian score-based

Error Rate 11.28% 32.56%
Precision 80.16% 48.46%
Recall 25.90% 16.15%

5 Discussion and Future Work

We found that the Bayesian algorithm had a higher pre-
cision rate (80%) than the score-based algorithm (48%).
While the exact reasons for this trend are still being inves-
tigated, we suspect that the answer lies in the fact that the
Bayesian algorithm is a white-box approach, requiring the
architect to understand how the internal workings of a con-
nector suit a given distribution scenario. The score-based
approach, while more efficient than the Bayesian, shows
lower precision due to the fact that it requires the user to
have an understanding of how performance requirements
and distribution scenarios influence each other depending
on the connector, ignoring its internal architecture. This
leaves a disconnect, where the architect must maintain an
implicit mental model of the connector, as opposed to the
Bayesian algorithm, where this model is made explicit.

While the early experience with DISCO has proved valu-
able, a number of pertinent research issues remain unex-
plored. In the immediate future, we plan on performing ex-
tensive evaluation of DISCO’s precision and recall against
that of empirical survey data gathered from data distribution
experts in the fields of software engineering, data manage-

ment, science data systems, and information retrieval. Ad-
ditionally, we plan on investigating architectural mismatch
within connectors and data system architectures [5].
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