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1 Introduction

In the paper titled ”Why did TD-Gammon Work?” [1] Pollack attributes the
success of TD-gammon to “the setup of co-evolutionary self-play biased by the
dynamics of backgammon.” Pollack used a hill climbing solution to achieve
some of the success of TD-gammon. Tesauro wrote a follow-up [3] and argued
that the difference between the performance of TD-gammon against the Pubeval
program (56% win) and that of Pollack’s solution (40-45% win) is significant
and compares to the difference between a world class player and an average
player. Nonetheless, the success of TD-gammon [2] has not been repeated in
other domains.

In his paper, Pollack does not discuss exactly what aspects of the dynamics
of backgammon are making self-play and reinforcement learning work. Our
hypothesis is that in part it has something to do with the partially ergodic
nature of backgammon. It is possible that this hypothesis is not correct, but it
would be worth exploring.

If the MDP is observed for an infinitely long period of time, a recurrent state
is one that gets visited infinitely many times. On the other hand, a transient
state is one which will be visited a finite number of times in an infinite viewing
of the MDP. An ergodic MDP is an MDP in which every state is recurrent. In
other words, in an ergodic MDP every state can be reached from every other
state through some transitions. Therefore, if an agent is making decisions in an
ergodic MDP, no current choices can cause it to be limited to a restricted region
of the state space in the MDP.

Backgammon is not a completely ergodic game, as there are transient states
in the game, for example in the endgame. But, I think we can also use ergodicity
in a looser sense and consider a degree of ergodicity by comparing the number
of recurrent states to the number of transient ones. One can also consider a
degree of recurrency for a state, based on the expected likelihood of visitations
to that state. With these notions, one can say that backgammon exhibits a



higher degree of ergodicity and has states that have higher degrees of recurrency,
compared to some other games.

As an example, in the game of chess, once the first piece is captured, none of
the board configurations which include all the pieces on the board can be visited
anymore. In chess, most middle-game states are highly transient. Therefore we
can say that the game is less ergodic.

The game of backgammon consists of two phases. In the first phase, the
players try to move all their checkers past the opponent’s checkers. Since the
checkers for the two players move in opposite directions, there is a great chance
that the players hit one another’s checkers. If a checker is hit, it has to enter the
board again. Once a player has moved all their checkers to the last quadrant
on the board, the second phase of the game-the race—begins, where the player
can take their checkers off the board. The first player to finish wins the game.

Since no checker exits the game in the first phase, all 15 checkers from each
player are always going to be in play. This makes most middle-game positions
in backgammon recurrent states, as they can be repeatedly visited in the same
game.

One interesting fact in support of our hypothesis is that TD-gammon was
pretty strong in middle-game positions and pretty weak in the endgame, which
does not have recurrent states. Our hypothesis is that the higher degree of
ergodicity helps TD-gammon in two ways:

1. It helps with self-play. This is because in any given game, the players
are likely to visit many middle-game positions. This, in turn, is caused
by the constant hitting and re-entering. Consider a solution that uses an
evolutionary setting to evolve a backgammon agent using self-play. When
a challenger is matched up against a champion, the challenger will need to
have a broad strength on many middle-game positions in order to beat the
champion. If the challenger makes slightly better moves in some positions
and really bad moves in some others, it is going to have a harder time
beating the champion in backgammon. This is because the ergodic nature
of the game makes it more likely that those weak positions are visited in
any single game.

Moreover, no matter what opening moves are taken, most middle-game
positions can still be encountered. So, this rules out a common problem
with self-play and co-evolutionary setups, which is developing strategies
that cover only a restricted part of the state space. Usually, such subop-
timal strategies can be developed due to some bias created early on for
choosing a specific series of opening moves.

2. It helps with reinforcement learning, because the high degree of recurrency
in the states makes them roughly equally likely to be encountered in the
games in the long run. So, the amount of experience that the agent gathers
for updating the state values would be balanced more evenly among the
game states.



2 Proposal

We propose to study the effect of ergodicity by designing a problem domain that
can show varying degrees of ergodicity. Using this domain, we try to evaluate
the impact of ergodicity on the learning performance of a reinforcement learning
solution and an evolutionary solution using self-play.
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Figure 1: Minigammon Board

The test domain that we have in mind is a simplified version of the backgam-
mon game, whose board is shown in Figure 1.

The board consists of two rows, each with four cells. Each player has two
checkers starting at the shown positions. The players take turns and move the
checkers in the shown directions. During each turn, the player tosses a coin
whose two sides read 1 and 2. The player then picks one of the two checkers
and moves it ahead 1 or 2 cells, depending on the outcome of the coin toss.
Each cell can be occupied by one checker only. Once a checker on the top row
reaches the end, it continues on to the bottom row, entering from the direction
of the player.

Players can also capture the opponent’s checkers, which causes the checker
to be taken off the board. If a checker is captured, the opponent has to play
that checker on the next turn. Depending on the outcome of the coin toss,
the captured checker will enter on the first or second cell on the top row. If
the player has another checker on the same cell,they can’t enter the captured
checker. If a player has no legal moves, the turn will change and the other player
continues.



Once a player has both checkers on the bottom row, they can start taking
checkers off the board by moving them past the last cell on the opponent’s side.
The player who takes both checkers off first wins the game.

The board and the rules have been designed to limit the number of possible
states so that a tabular TD method can be used for reinforcement learning.

Requiring that captured checkers enter on the top row increases the chance
for conflicts on the board and the likelihood that configurations are repeatedly
visited during a single game. This corresponds to a higher degree of ergodicity
in the domain. On the other hand, if we require that all captured checkers
enter on the bottom row, then some configurations would never be repeated. In
particular, since no checker ever re-enters on the top row, configurations with
some checker on top first row would be encountered only during the beginning
of each game. This increases the number of transient states and reduces the
degree of ergodicity.

One can imagine a spectrum of possibilities between these two cases by
making the selection of the re-entry row a probabilistic process. If p represents
the probability by which a captured checker enters on the top row, then higher
values for p would correspond to higher degrees of ergodicity, as it increases the
degree of recurrency of those states that include some checker on the top row.

3 Experiment Setup

For reinforcement learning: Use self-play for training. At the end of each
episode, evaluate the policy against a random opponent for a number of games
and record the number of games won.

For evolutionary: Evolve a neural network (topology similar to the ones
used by Tesauro and Pollack). During each generation, mutate challengers by
adding Gaussian noise to the weights. If the challenger beats the champion,
move the champion’s weights in the direction of the challenger. Then, evaluate
the generation champion against the random opponent.

We would run these learning experiments with varying values of p and eval-
uate its impact on the learning rates of both methods.

Even if the test domain that we developed does not produce convincing
results, this project would give us the ingredients to try different test domains
later on.
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