
Studying the Impact of Domain Ergodicity on Efficiency of
Reinforcement Learning and Training through Self-Play

Reza Mahjourian
Department of Computer

Science
University of Texas at Austin

reza@cs.utexas.edu

Prateek Maheshwari
Department of Computer

Science
University of Texas at Austin
prateek@cs.utexas.edu

Risto Miikkulainen
Department of Computer

Science
University of Texas at Austin

risto@cs.utexas.edu

1. INTRODUCTION
In the paper titled ”Why did TD-Gammon Work?” [6] Pol-
lack attributes the success of TD-Gammon to “the setup of
co-evolutionary self-play biased by the dynamics of backgam-
mon.” Pollack used a hill climbing solution to achieve some
of the success of TD-Gammon. Tesauro wrote a follow-
up [11] and argued that the difference between the perfor-
mance of TD-Gammon against the Pubeval program (56%
win) and that of Pollack’s solution (40-45% win) is signifi-
cant and compares to the difference between a world class
player and an average player. Nonetheless, the success of
TD-Gammon [10] has not been repeated in other domains.

In his paper, Pollack does not discuss exactly what aspects
of the dynamics of backgammon are making self-play and
reinforcement learning work. Our hypothesis is that in part
it might have something to do with the partially ergodic na-
ture of backgammon. In this project, we attempt to evaluate
this hypothesis.

If the MDP is observed for an infinitely long period of time,
a recurrent state is one that gets visited infinitely many
times. On the other hand, a transient state is one which
will be visited a finite number of times in an infinite viewing
of the MDP. An ergodic MDP is an MDP in which every
state is recurrent. In other words, in an ergodic MDP every
state can be reached from every other state through some
transitions. Therefore, if an agent is making decisions in an
ergodic MDP, no current choices can cause it to be limited
to a restricted region of the state space in the MDP.

Backgammon is not a completely ergodic game, as there are
transient states in the game, for example in the endgame.
But, we can also use ergodicity in a looser sense and consider
a degree of ergodicity by comparing the number of recurrent
states to the number of transient ones. One can also consider
a degree of recurrency for a state, based on the expected like-
lihood of visitations to that state. With these notions, one
can say that backgammon exhibits a higher degree of ergod-

icity and has states that have higher degrees of recurrency,
compared to some other games.

As an example, in the game of chess, once the first piece is
captured, none of the board configurations which include all
the pieces on the board can be visited anymore. In chess,
most middle-game states are highly transient. Therefore we
could say that the game is less ergodic.

The game of backgammon consists of two phases. In the
first phase, the players try to move all their checkers past the
opponent’s checkers. Since the checkers for the two players
move in opposite directions, there is a high likelihood that
the players hit one another’s checkers. If a checker is hit, it
has to enter the board again. Once a player has moved all
their checkers to the last quadrant on the board, the second
phase of the game–the race–begins, where the player can
take their checkers off the board. The first player to finish
wins the game.

Since no checker exits the game in the first phase, all 15
checkers from each player are always going to be in play.
This makes most middle-game positions in backgammon re-
current states, as they can be repeatedly visited in the same
game.

One interesting fact in that may support this hypothesis is
that TD-Gammon was pretty strong in middle-game posi-
tions and quite weak in the endgame, which does not have
recurrent states. Our hypothesis is that the higher degree
of ergodicity helps TD-Gammon in two ways:

1. It helps with self-play, because in any given game the
players are likely to visit many middle-game positions.
This is caused by the constant hitting and re-entering.
Consider a solution that uses an evolutionary method
to evolve a backgammon agent using self-play. When
a challenger is matched up against a champion, the
challenger will need to have a broad strength on many
middle-game positions in order to beat the champion.
If the challenger makes slightly better moves in some
positions and really bad moves in some others, it is
going to have a harder time beating the champion in
backgammon. This is because the ergodic nature of the
game makes it more likely that those weak positions
are visited in any single game.

Moreover, no matter what opening moves are taken,
most middle-game positions can still be encountered.

So, this rules out a common problem with self-play and
co-evolutionary setups, which is developing strategies
that cover only a restricted part of the state space.
Usually, such suboptimal strategies can be developed
due to some bias created early on for choosing a specific
series of opening moves.

2. It helps with reinforcement learning, because the high
degree of recurrency in the states makes them roughly
equally likely to be encountered in the games in the
long run. So, the amount of experience that the agent
gathers for updating the state values would be bal-
anced more evenly among the game states.

2. PROBLEM DOMAINS
To study the effect of ergodicity on learning, we designed
and used two problem domains that can potentially show
varying degrees of ergodicity.

2.1 mini-gammon
We designed mini-gammon in an attempt to create a simpli-
fied version of backgammon that would be easier to study.
The board of mini-gammon is shown in Figure 1.

1 2 5 6 7 8 930 4

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 1: The mini-gammon Board

The board consists of one row with 8 cells (points in backgam-
mon speak.) Each player has two checkers starting at the
shown positions. The players take turns and move the check-
ers in the shown directions. During each turn, one player
tosses a coin whose two sides read 1 and 2. The player then
picks one of the two checkers and moves it ahead 1 or 2 cells,
depending on the outcome of the coin toss.

Each point can be occupied by one or two checkers belonging
to the same player. When a player has two checkers in the
same cell, they form a block. Checker’s in a block can not
be hit by the opponent. This is while if the player has a
single checker in a cell, the opponent can hit that checker
by moving a checker of their own to the same cell. Once a
checker has been hit, it is taken off the board and placed in
the rectangular area on the player’s side. This area is called
the bar in backgammon.

If a player has a checker on the bar, they have to play that
checker on the next turn. Depending on the outcome of the
coin toss, the hit checker will enter on the first or second
cell on the player’s side. If the player has another checker
in the target cell, they will form a block. If the opponent
has a single checker in the target cell, the player hits the
opponent’s checker by entering the board. If the opponent
has a block in the target cell, the player can not enter the
checker and has to forfeit their turn. If a player has no legal

moves, the turn will change and the other player continues
by tossing the coin.

Once a player has both checkers on the second half of the
board (on the opponent’s side,) they can start taking check-
ers off the board by moving them past the last cell on the
opponent’s side. This is called bearing checkers off. The
player who takes both checkers off first wins the game.

The board and the rules have been designed to limit the
number of possible states so that a tabular temporal dif-
ference (TD) learning method can be used for a baseline
reinforcement learning agent.

Requiring that the hit checkers enter from the end of the
board, as in backgammon, increases the chance for conflicts
on the board and the likelihood that configurations are re-
peatedly visited during games. This corresponds to a higher
degree of ergodicity in the domain. To vary the ergodicity
of the domain, we considered moving the designated reentry
position forward towards the opponent. For example, con-
sidering a reentry offset of 1 would mean that by tossing a
1 the player can place their checker on the 2-point and by
tossing a 2 they can place it on the 3-point. If the reen-
try offset is higher, then the checkers that reenter the board
would be less likely to have the opportunity to engage the
opponent checkers.

We also considered using two designated reentry offsets of 0
and 4 and using a probabilistic process to determine one of
these two reentry points on each reentry. A reentry offset
of 0 corresponds to entering from the end of the board and
a reentry offset of 4 corresponds to entering from the mid-
dle point of the board. A parameter p that stays constant
during the whole game controls the likelihood that either of
the reentry offsets are selected. If p = 1.0, then the checkers
always reenter from the end of the board and if p = 0.0 then
the checkers always reenter from the middle of the board.
Choosing other values for p would give us a spectrum of pos-
sibilities. Higher values of p should correspond to a higher
degree of ergodicity in the game, as it increases the degree of
recurrency of those states that include checkers on the first
half of the board.

2.2 Nannon
The second problem domain that we use is the backgammon-
like game called NannonTM designed by Pollack [5]. The
board of Nannon is shown in Figure 2.

0 1 2 3 4 5 6 7
�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

Figure 2: The Nannon Board

In Nannon, a single six-sided die is used to control checker

Offset Avg.
of
plies
per
game

of
unique
states
visited

Avg. # of
visits to
individual
states

Var.
of
visits
to
states

over
1000
games

over
1000
games

per
1000
plies

over
1000
games

per
1000
plies

over
1000
games

0 59.26 1809 30.53 32.76 0.55 2104.44
1 40.30 1487 36.90 27.10 0.67 2006.41
2 30.55 1208 39.54 25.29 0.83 2304.85
3 24.77 986 39.80 25.12 1.01 2135.88
4 20.48 911 44.48 22.48 1.10 2210.65

Table 1: Effects of varying the reentry offset on dy-
namics of the game in mini-gammon

movements. Each player has 3 checkers and they start at
the positions shown in Figure 2. Two checkers start on the
player’s 1-point and 2-point and the third checker is on the
bar. Each point can be occupied by at most one checker at
any given time. To simulate blocking, Nannon has the rule
that any two checkers that are adjacent to each other on the
board (not including the bar) form a block. Checkers in a
block can not be hit by the opponent. Nannon’s rules are a
little more relaxed compared to backgammon. For example
a player does not have to play a checker that is hit on the
next turn. Also, players can bear off checkers at any time
regardless of the positions of the other checkers.

To reduce the advantage for the player who starts the game
in Nannon, the outcome of the first roll is decided by sub-
tracting the outcome of two die rolls. More specifically, this
makes rolling a 1, which would be a bad roll more likely
than rolling a 5, which would be a good roll to start the
game with.

We considered using the same two parameters of reentry
offset and p that were introduced for mini-gammon to vary
the dynamics of Nannon with the intention of controlling
the degree of ergodicity in the game.

2.3 Some Statistics on the Problem Domains
Before implementing the learning algorithms, we collected
some statistics on these two problem domains to gain some
insight on the impact of varying the parameter values on the
behavior of the domains.

For each problem domain, we ran 1000 games between two
agents which selected moves randomly. Tables 1 and 2 show
some statistics on varying the reentry offset in mini-gammon
and Nannon, respectively. As the numbers indicate, lower
values for offset lead to longer games on average in both do-
mains. Lower values for offset also increase the total number
of board configurations visited in these 1000 games.

One particular piece of statistics that was of interest to us
is the variance of the number of visitations to individual
states. We thought a lower variance would be desirable since
it would help balance the amount of experience that a TD-
based learner would gain on different configurations in the
game. The data in the tables suggest that there is not a
great amount of difference in the variance values for different

Offset Avg.
of
plies
per
game

of
unique
states
visited

Avg. # of
visits to
individual
states

Var.
of
visits
to
states

over
1000
games

over
1000
games

per
1000
plies

over
1000
games

per
1000
plies

over
1000
games

0 13.05 1742 133.49 7.49 0.57 695.79
1 11.47 1670 145.60 6.87 0.60 922.54
2 10.43 1613 154.69 6.46 0.62 935.35
3 9.29 1493 160.75 6.22 0.67 755.60
4 8.55 1246 145.75 6.86 0.80 948.50

Table 2: Effects of varying the reentry offset on dy-
namics of the game in Nannon

reentry offsets.

We also generated similar statistics with different value for p
ranging from 0.0 to 1.0 in both domains. We leave out those
results for brevity in this report. However, the statistics
from varying p suggested that medium values of p would
lower the visitation variance in mini-gammon.

Also, we realized that by varying p we would be varying the
degree of stochasticity in the domains. In one of his ini-
tial papers [9] on TD-Gammon, Tesauro mentions the high
degree of stochasticity in backgammon as one of the rea-
sons why learning backgammon is a challenging task. How-
ever, in his later paper [10] he mentions the stochasticity
in backgammon as one of the potential reasons why TD-
Gammon works so well. The high degree of stochasticity
facilitates exploration by the agents. This is specially of im-
portance in TD methods which have to manually balance
exploitation with exploration. Also in self-play learning, the
stochastic outcome of moves can help the learner get out of
local minima.

For this reason, we mostly counted on experimenting with
various reentry offsets to find a link between ergodicity and
learning efficiency. However, we also performed experiments
with varying p with the hope that it could help us observe
the impact of changing the domain’s dynamics in different
ways.

Figures 3 and 4 show the state discovery rates correspond-
ing to different reentry offsets in mini-gammon and Nannon,
respectively. Regardless of the eventual number of states
discovered for each value, it seems that with a lower offset
the plots plateau more quickly. This might translate to an
increased efficiency in exploration. Figures 5 and 6 show
the state discovery rates with varying values of p in mini-
gammon and Nannon, respectively.

In general, the main challenge with designing the problem
domain is to vary the characteristic of the game that we are
interested in without changing much else. For example, the
data in Tables 1 and 2 show that lowering the value of the off-
set increases the total number of states discovered per 1000
games. But it is not clear whether discovering more states
indicates that we would be doing better at exploration, or if
it is just due to the games taking longer to complete.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te
s
 D

is
c
o

v
e

re
d

Games Played

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 3: Total number of states discovered with
different values of reentry offset in mini-gammon

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te
s
 D

is
c
o

v
e

re
d

Games Played

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 4: Total number of states discovered with
different values of reentry offset in Nannon

Tables 7 and 8 show the distribution of visits to individual
states in mini-gammon for offset = 0, and offset = 4 over
1000 games. The states have been order based on the ear-
liest ply number when they were visited. With offset = 0,
there is an increased rate of visitation to early-game states.
This might be because when the checkers are hit and reen-
ter, then enter in the same positions that they would occupy
by moving forward in the beginning of the game. Since with
TD methods, the state updates values that propagate back
to the initial states decay in magnitude, an increase in num-
ber of visitations to early-game positions might speed up the
learning process. Some of the higher rate of visitation to the
early-game states must be attributed to the reversed funnel-
ing effect due to opening the game from the same starting
state every time. It would be interesting to compare this
plot with a similar plot on the game of chess and see if the
downward slope on the visitation counts to early-game po-
sitions would be different in chess.

3. LEARNING AGENTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te
s
 D

is
c
o

v
e

re
d

Games Played

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 5: Total number of states discovered with
different values of p in mini-gammon

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te
s
 D

is
c
o

v
e

re
d

Games Played

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 6: Total number of states discovered with
different values of p in Nannon

In this section, we discuss the three types of learning agents
that we developed for this project.

3.1 A Tabular Sarsa(λ) Agent
In order to develop an idea on how well one could learn to
play mini-gammon and Nannon, we started by implement-
ing a reinforcement learning agent using tabular Sarsa(λ) [8].
Since we didn’t have access to any existing opponent which
we could play against, we settled on training and evaluat-
ing our learner against an opponent which selected moves
randomly.

The tabular Sarsa(λ) learner maintains a Q table on state-
action pairs. The state is constructed by encoding the cur-
rent board configuration, which includes the positions of the
checkers, the current roll of the die, and the player who has
the turn.

After making each move, the Q values are updated according
to this equation [8]:

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

V
is

it
 C

o
u

n
t

States (Sorted by Earliest Visit Time)

Offset = 0

Figure 7: Distribution of number of visits to indi-
vidual states in mini-gammon for offset = 0

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

V
is

it
 C

o
u

n
t

States (Sorted by Earliest Visit Time)

Offset = 4

Figure 8: Distribution of number of visits to indi-
vidual states in mini-gammon for offset = 4

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) for all s, a (1)

where

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

The term rt+1 stands for the reward received on transition-
ing from state st to the state st+1, and δt is the TD update
that is applied to each state. In backgammon, the are no
intermediate rewards in the game and only at the end of the
game the winner and the loser receive a reward value of 1
and 0, respectively. et(s, a) stands for eligibility traces for
past visited states. After making every moves, the eligibil-
ity traces for the past states are decayed according to the λ

parameter, which we set to 0.90.

Since there is no discounting factor in backgammon, we set

γ equal to 1.0. We also used optimistic initialization for
entries in the Q table to facilitate exploration. For α, the
learning rate parameter, we initially used a fixed value of
0.1, but later implemented an annealing schedule that set α
equal to 1.0 divided by the number of visitations to the state
whose value is being updated. The learner used an ǫ-greedy
move selection method with ǫ equal to 0.05 during the entire
training.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t
Training Episode

rl-minigammon

Figure 9: Learning performance of the Sarsa(λ)
agent in mini-gammon

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Training Episode

rl-nannon

Figure 10: Learning performance of the Sarsa(λ)
agent in Nannon

Figures 9 and 10 show the learning performance in mini-
gammon and Nannon, respectively. Here, the offset param-
eter is set to its natural value of 0, corresponding to the
standard versions of the games. In these plots, the win ra-
tios have been averaged over the last 3000 episodes.

Even though our learner is not perfect and it is possible
that we could improve the results by tuning the learning pa-
rameters, the plots suggest that the mini-gammon domain
admits more to developing strategies, at least against a ran-
dom opponent. The learner could reach a win ratio of 82%
in our trials for mini-gammon. This is while for Nannon,

the agent couldn’t win more than 63% of the games against
the random opponent.

3.2 The Hill-Climbing Agent
To let ourselves evaluate the impact of ergodicity on effi-
ciency of learning through self-play, we implemented a Hill-
Climbing (HC) agent following the method used by Pollack
for HC-Gammon [6]. The motivation for developing this
agent was to observe if a higher degree of ergodicity would
make self-play more efficient.

The evolutionary setup used to evolve the hill climbing agent
is as follows. Following Pollack’s method, we use a popula-
tion of size one. The agent uses a neural network as the
state value predictor for board configurations. The board
configuration is fed to the neural network using a unary en-
coding of the number of checkers from each player on each
cell on the board. For example, in mini-gammon, there are
two input nodes per player per board cell. If the player play-
ing white has one checker on a cell, the first input is turned
on. If they have two checkers on the same cell, both inputs
are turned on. (We also had the option of turning on only
the second input if two checkers were present, but I believe
this is what Tesauro and Pollack did, even though I couldn’t
find a reference in their papers.) The network input encod-
ing also includes two inputs for encoding the player who has
the turn.

The networks used by Tesauro and Pollack used additional
inputs. Pollack included an input node which was turned
on during the endgame, where all the checkers from the two
players have moved past each other. Tesauro also included
input nodes which provided the network with additional in-
formation, such as the probability of getting hit on the next
dice roll.

Following Pollack’s method, our network has a single output
node, which predicts the value of the state for the white
player. Tesauro used two output nodes predicting values for
the white and black player separately (He actually used four
output nodes to take care of winning gammons, which would
receive a double reward.)

When selecting moves, the agent considers the outcome of
playing each possible checker. The resulting configurations
are fed into the network and the predicted state values are
extracted. Then the agent selects the configuration that has
the highest value for itself, depending on the checker color
that it is playing. If the agent is playing white checkers, it
selects the configuration that has the highest predicted value
for white and if it is playing black checkers, it selects the
configuration that has the lowest predicted value for white.

We used a total of 10 hidden units in our neural network.
This is lower than what Pollack and Tesauro used, but con-
sidering that our problem domain is simpler, we thought 10
hidden units might be enough. Using 10 hidden units and
bias units brings the number of connection weights in our
neural networks to 441 for mini-gammon and 281 for Nan-
non. The network used by Pollack had 20 hidden units and
3980 total weights.

At the start of each generation, the connection weights of the

only member of the population (the champion) are mutated
to create a challenger. The champion and the challenger
play a number of challenge games. If the challenger wins a
set number of the challenge games, the champion’s weights
are moved in the direction of the challenger’s weights. If
the challenger loses, a new challenger is created and the
challenge games are repeated. We required winning 7 out of
8 games in our experiment. Pollack started with requiring
winning 3 out of 4 games and increased the ratio of wins
required after tens of thousands of generations. However,
since our game is simpler, we thought requiring more wins
from the start would be beneficial.

If the challenger beats the champion, the champion’s weights
are moved toward the challenger by 5%. That is, the new
champion’s weights are calculated as 0.95× champion’s weights
+ 0.05 × challenger’s weights. This is what Pollack suggests
to prevent losing a good champion when a challenger man-
ages to beat the champion by luck.

Following Pollack’s solution, we initialize all the network
weights to 0.0. Pollack mutated the champion’s weights by
adding some Gaussian noise. He mentions in his paper that
the noise was set up such that the RMS distance between the
weights would be equal to 0.05. Based on our calculations,
this amounts to a standard deviation of about 0.22. This
is what we used for generating the Gaussian noise. It is
possible that some other numbers would be more suitable
for a network of smaller size that we use. But we settled on
using the same numbers.

Our initial attempts at evolving the HC agent were not
successful. At the end of each generation, we evaluated
the champion against the random opponent for about 1000
games. The agent’s win ratio would just fluctuate around
50-55%.

Then we realized that during our challenge games, we are
always having the champion play the white checkers and
the challenger play the black checkers. This is while during
the evaluation games, the champion played as white and
the random agent played as black. We expected that if the
challenger beating the champion is an indication that the
weights in the challenger’s network were more accurate in
predicting state values for white, then those weights could
be used by a white player as well. However, for some reason,
this was not the case.

In retrospect, one potential reason why this was happening
could be due to the weights on the two network inputs that
encoded who had the turn to move. When black evaluates
the outcome of moving checkers, it creates a copy of the
current state, applies the move, and encodes the resulting
state to feed it to the network. Since the state automati-
cally alternates the player who has the turn upon making a
move, the board configurations that the black player evalu-
ates would always have the input corresponding to “white’s
turn to move”on. So, the black player never uses the connec-
tion weights coming from the input corresponding to“black’s
turn to move” in its evaluations. Then if we have that chal-
lenger play as white, it would be using a different set of
weights in its evaluations. Those would be the weights that
are not used and challenged during the challenge games.

Wemodified the setup of the games so that the players would
alternate playing black and white checkers on every other
game. We were already alternating the player who started
the game at the beginning of every game. In order to in-
crease the fairness in games, we have also been controlling
the random seeds [2]. We already used the same random seed
for each pair of games. Adding the requirement for alternat-
ing checker colors increased the number of trials for every
game (corresponding to an initial random seed) to four. The
players would get to play the same game as white and black,
and as the first and second player. At this point we started
using this setup for all our game sets, during training and
evaluation likewise.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

HC-minigammon

Figure 11: Learning performance of the HC agent
in mini-gammon

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

HC-nannon

Figure 12: Learning performance of the HC agent
in Nannon

Implementing this change greatly improved the performance
of the HC agent. Figures 11 and 12 show the learning
progress of the HC against in mini-gammon and Nannon, re-
spectively. For these plots, the parameters controlling reen-
try offset and p were not used. At the beginning of each
generation, we evaluated the champion against the random
agent for 1024 games. The checker colors and the starting

players were alternated during the evaluation games as well.
The data for plots were computed by averaging results from
10 trials.

As the plots show, the agents were able to achieve win ratios
comparable to what was achieved by the tabular Sarsa(λ)
agent. A considerable portion of the time used in the evo-
lutionary algorithm was spent on finding successful chal-
lengers. A single run of evolving the HC agent took about
12 hours to finish on the condor cluster in the department.
Figures 13 shows the number of challengers mutated per gen-
eration until a successful one was found for mini-gammon.
As the plot shows, in some generations, it could take up to
180 8-game challenges to find an agent that could beat the
champion.

We have used a total of 2000 generations. It is possible
that continuing the evolution for more generation could im-
provement the results. The number of weights in the neural
networks that we used are about a tenth of the number of
weights that were used for HC-Gammon.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b

e
r

o
f

8
-g

a
m

e
 t

ri
a

ls
 u

s
e

d
 t

o
 f

in
d

 a
 s

u
c
c
e

s
s
fu

l
c
h

a
lle

n
g

e
r

Generation

HC-minigammon

Figure 13: Number of HC challengers mutated per
generation for mini-gammon

We also ran experiments with the hill-climbing agent by
varying the parameters p and the reentry offset in mini-
gammon and Nannon domains. The results are shown in
Figures 14, 15, 16, and 17. All the plots have been gener-
ated based on data averaged over 10 trials. We have included
the plots here for improving the presentation of the report.
These results are discussed in Section 4.

3.3 The Neural TD Agent
The last agent that we implemented was a reinforcement
learning agent that used a neural network and trained the
weights in the network using a TD learning method, namely
Sarsa(λ). The motivation for developing this agent was to
see if higher degrees of ergodicity would help with reinforce-
ment learning.

This agent used configurations similar to what was used by
Tesauro for TD-Gammon. We used the same network archi-
tecture that we used for the HC agents, with the difference
that we used two output nodes predicting state values for

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 14: Learning performance of the HC agent
in mini-gammon with different reentry offsets

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 15: Learning performance of the HC agent
in Nannon with different reentry offsets

white and black separately. This would be in line with the
architecture of the output layer in TD-Gammon. We didn’t
provide the network with any additional inputs besides en-
coding the positions of the checkers and player who has the
turn.

Following Tesauro’s recipe, we had the neural TD agent play
both sides of the board during the training games. The
agent’s move selection algorithm was similar to what we
used for the HC agent. The agent would consider the out-
come of moving every possible checker and feed them to the
network. It would then select the move that would result
in a configuration with the highest value for itself. Since
the network provided values both for white and black, we
computed the difference between the two values available at
the output nodes and used the difference to determine the
relative values of the states. It is not clear from Tesauro’s
papers whether he used this same approach for interpreting
the state values or not.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 16: Learning performance of the HC agent
in mini-gammon with different values of p

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Generation

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 17: Learning performance of the HC agent
in Nannon with different values of p

The neural TD agent used a TD learning algorithm. Tesauro
provides the following equation for updating the weights in
the network after observing every transition:

wt+1 − wt = α(Yt+1 − Yt)
t∑

k=1

λ
t−k

∇wYk (2)

The w vector represents the weights in the network. The
term Yt represents the network outputs corresponding to the
state visited at time t. The term ∇wYk is the gradient of the
network output with respect to the weights. The term λt−k

determines the eligibility of each of the past visited states
for receiving an update from temporal difference observed
at the current state (Yt+1 − Yt.)

The components in this equation directly correspond to the
components in Equation 1 that was used for calculating the
TD updates for the Sarsa(λ). So, instead of modifying the

network weights directly according to the equation used by
Tesauro, we applied the updates by computing the targets
for network inputs matching the required TD updates and
used backpropagation to update the weights in the network.
More specifically, after every transition, we computed the
size of the updates on all eligible past states and created
a training dataset that mapped the network inputs corre-
sponding to those states to new output values which were
calculated by adding the TD update to the current output
of the network.

We initially used the same learning parameters that were
used by our Sarsa(λ) agent for computing the TD updates.
More specifically, we set λ to 0.9, and used an annealing
schedule to compute the value of α in Equation 1 which
controlled by how much the current state value should be
moved in the direction of the update.

For α in Equation 2 which controlled the learning rate of
the neural network, we used a value of 0.1. The network
was trained on the dataset containing the TD updates for
exactly one epoch.

This implementation was quite slow, as it required train-
ing the network after making almost every move. So we
implemented some approximations to speed up the process.
More specifically, we delayed applying the TD updates un-
til the very end of every episode. During the episode, we
stored the requested TD updates for every state. Then at
the end of the episode, for every state all the TD updates
requested during the episode were summed up and applied
at once in one training dataset. Note that these approxi-
mations would lower the accuracy of our implementation,
as the state value updates that should be applied during an
episode would not become visible to the other states until
the end of the episode. This could specially have an impact
if states are revisited during the same episode. However, this
approximation made the algorithm about 20 times faster.

Since we are not modifying the network until the end of
the episode, we also implemented some caching mechanisms
for avoiding hitting the network for getting state values too
often. We also cached the network input encodings for board
configuration so that they won’t need to be recomputed.

Our initial attempts at training the neural TD agent were
not successful. We tried increasing and decreasing the value
of the learning rate parameter for backpropagation, α, and
also the eligibility decay rate, λ, but they didn’t help.

Later we realized that the source of the problem was the
α parameter in Equation 1. This parameter is designed to
limit the fluctuations in state values when using a tabular
value approximator. In a domain were the outcome of the
actions are stochastic, we wouldn’t want an occasional ob-
servation to distort the state values too much. However,
the α in Equation 2 used for computing updates to the net-
work weights is already limiting the amount of change to
the network’s predicted values by moving the weights only
a fraction of the way toward the requested targets. This
is especially true since we were applying backpropagation
only for one epoch. Since we used an annealing schedule to
lower the value of α in Equation 1 for computing the TD

updates, then after a number of episodes, the TD updates
would shrink considerably and the network weights would
practically become fixed.

Realizing that the learning rate used for backpropagation is
already damping the impact of the updates, we set the value
of α for computing the TD updates all the way up to 1.0.
This improved the results significantly.

Figures 18 and 19 show the learning performance of the neu-
ral TD agent in mini-gammon and Nannon. The plots have
been generated by averaging the data from 10 trials. Dur-
ing each iteration, the agent was trained against itself for 16
games. Then it was evaluated against the random agent and
its win ratio was recorded. The agent’s learning mechanism
was paused during the evaluation games and resumed before
playing the next training game set.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

TD-minigammon

Figure 18: Learning performance of the neural TD
agent in mini-gammon

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

TD-nannon

Figure 19: Learning performance of the neural TD
agent in Nannon

The performance of the TD agent is comparable to the HC
agent. However, for mini-gammon, it doesn’t reach the win
ratios achieved by the tabular Sarsa(λ) agent. We don’t

know the reason behind this difference. It is possible that
increasing the number of hidden units could help. Also,
it is possible that we are suffering the “continual learning
problem” that is discussed by Whiteson in [12].

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 20: Learning performance of the neural TD
agent in mini-gammon with different reentry offsets

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 21: Learning performance of the neural TD
agent in Nannon with different reentry offsets

For training a TD agent through self-play, we had two op-
tions. We could either have a single agent play both sides
of the board, or we could use two instances of the agent and
train them by playing against each other. We used a sin-
gle instance, following the approach used by Tesauro. We
haven’t verified this, but we believe using a single instance
would work better than using two instances of the same
agent. If an agent only plays one side of a game, say white,
then it only observes the transitions between states where
white gets to play. It is true that even though the agent
doesn’t observe the intermediate states where black gets to
move, given enough sample trajectories, it can still develop
a good approximation of the state values. However, observ-
ing the intermediate board configuration can speed up the
propagation of state values, since the agent is also develop-
ing approximations on the values of the opponent’s states.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 22: Learning performance of the neural TD
agent in mini-gammon with different values of p

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 100 200 300 400 500 600

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Iteration (16 training games each)

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 23: Learning performance of the neural TD
agent in Nannon with different values of p

If the agent playing white applies an update on one of the
black’s states, it can later on immediately use that estimate
upon seeing a transition from one of its own states to that
black state.

Figures 20, 21, 22, and 23 show the results of running the
neural TD agent on mini-gammon and Nannon domains
with different values of reentry offset and p. The following
section discusses these plots.

4. EXPERIMENTS WITH ERGODICITY
In this section we discuss the results of running experiments
involving the hill-climbing agent and the neural TD agent
by varying the parameters p and the reentry offset in the
mini-gammon and Nannon domains.

The plots in Figures 14, 15, 16, and 17 show the results for
the HC agent. It can be seen in the plots that with lower
values of reentry offset and higher values of p the HC agent
can achieve higher win ratios against the random opponent.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Training Episode

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 24: Learning performance of the Sarsa(λ)
agent in mini-gammon with different reentry offsets

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Training Episode

Offset = 0
Offset = 1
Offset = 2
Offset = 3
Offset = 4

Figure 25: Learning performance of the Sarsa(λ)
agent in Nannon with different reentry offsets

However, having a higher win ratio can not be attributed
to the presumed higher degree of ergodicity associated with
these parameter values.

In fact, it might be the case that increasing the reentry offset
and lowering the value of p changes the dynamics of the
games to the point that achieving the same win ratio is not
possible any more. This is not hard to imagine, since by
reducing the chance for engaging the opponent checkers, the
amount of leverage an intelligent agent has on a random
opponent would also decrease.

To be able to better evaluate the performance of our HC and
TD agents under different parameter values, we also ran the
tabular Sarsa(λ) agent against the random opponent with
the same ranges of parameter values.

Figures 24, 25, 26, and 27 show the performance of the
Sarsa(λ) in the two domains. It is evident that the Sarsa(λ)
agent can also achieve higher win ratios with those particu-

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Training Episode

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 26: Learning performance of the Sarsa(λ)
agent in mini-gammon with different values of p

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

W
in

s
 a

g
a

in
s
t

R
a

n
d

o
m

 A
g

e
n

t

Training Episode

p = 1.00
p = 0.75
p = 0.50
p = 0.25
p = 0.00

Figure 27: Learning performance of the Sarsa(λ)
agent in Nannon with different values of p

lar parameter values.

On the other hand, looking at the highest possible win ratios
is not the only way to assess the learning performance of a
learner. We can also consider the speed at which the agents
reach the eventual win ratios, as a metric for evaluating the
efficiency of a learner.

Figures 20, 21, 22, and 23 the results from the TD agent in
both domains. Figure 20 suggests that with a lower value
for the reentry offset, the neural TD agent is able to reach
its maximum win ratio more quickly, compared to higher
offset values.

We haven’t had enough time to study these plots more care-
fully, but it’s evident that the parameters that we have de-
signed the presumed ergodicity of the domain are affecting
other aspects of the dynamics of the domain. It’s not clear
whether one could ever only change the degree of ergodicity
in a domain without affecting much else. But we would at

least need to be able to isolate the effect of our changes on
other aspects of the domain’s behavior.

5. RELATED WORK
Legg and Hutter [4] prove that ergodic MDP are self-admitting
to optimization. That is, given unbounded time, an optimal
policy can always be developed for ergodic MDPs using self-
optimization. While backgammon is not fully ergodic, it can
be said to have a high degree of ergodicity, and this result
is encouraging. At the same time, this work does not dis-
cuss the efficiency of learning in terms of the time needed
for finding an optimal policy.

We couldn’t find other related papers discussing the impact
of ergodicity on learning, but there is considerable amount of
work done on using reinforcement learning and evolutionary
computing for playing board games.

Wiering et al [13] use temporal difference learning to learn a
game position evaluation function. They attribute the effec-
tiveness of self-play in backgammon to the smoothness of the
evaluation function. They discuss that since a a particular
position’s value is averaged over the possible dice rolls, un-
like chess and go, nearby positions do not differ significantly
in their values, and the evaluation function is smoother.

Runarsson and Lucas [7] study and compare the perfor-
mance of temporal differencs learning using self-play and
co-evolution for learning a position evaluation function for
the game of go. They report that temporal difference learn-
ing learns faster, but under the right set of parameters, co-
evolution can learn to win more games than temporal dif-
ference methods.

Darwen [1] showed that co-evolution could evolve a linear
backgammon position evaluator that outperformed the lin-
ear version of Pubeval, which uses temporal difference learn-
ing. However, co-evolution had difficulty evolving a non-
liner position evaluator that performed well, as it required
a prohibitively large number of games per generation.

Kotnik and Kalita [3] compare temporal difference learning
and co-evolution for the game of rummy. They report that
co-evolutionary agents in general outperform TD agents and
exhibit a more balanced strategy.

6. CONCLUSIONS AND FUTURE WORK
We have implemented three different types of learners that
can successfully learn to play the two games discussed in
this report. Even though the results from our experiments
with varying ergodicity are not conclusive at all, they seem
promising. We have the ingredients in place to try our ap-
proach on other domains or with different configurable pa-
rameters. For example, it is not difficult to increase the
number of checkers or increase the size of the board in mini-
gammon.

We would also need to develop some concrete metric for
measuring the degree of ergodicity in a domain. One of the
methods that we have considered is to analyze the games and
count the number of backward transitions in every game.
Suppose we sort all the states in the game by their ear-
liest visit times. A transition s → t would be backward

if we have earliest visit time(t) < earliest visit time(s).
We can also consider the length of a backward transition by
calculating the difference between the earliest visit times to
the two states. Having more and longer backward transi-
tions should correspond to a higher degree of ergodicity.

7. REFERENCES
[1] P. Darwen. Why co-evolution beats temporal

difference learning at backgammon for a linear
architecture, but not a non-linear architecture. In
Evolutionary Computation, 2001. Proceedings of the

2001 Congress on, volume 2, pages 1003–1010. IEEE,
2001.

[2] J. Kiefer and J. Wolfowitz. Stochastic estimation of
the maximum of a regression function. The Annals of

Mathematical Statistics, 23(3):462–466, 1952.

[3] C. Kotnik and J. Kalita. The significance of
temporal-difference learning in self-play training
td-rummy versus evo-rummy. In MACHINE

LEARNING-INTERNATIONAL WORKSHOP

THEN CONFERENCE-, volume 20, page 369, 2003.

[4] S. Legg and M. Hutter. Ergodic mdps admit
self-optimising policies. Technical report, Technical
Report IDSIA-21-04, IDSIA, 2004.

[5] J. Pollack. Nannon: A nano backgammon for machine
learning research. In Proc. 2005 Int’l Conf.

Computational Intelligence in Games, pages 277–284,
2005.

[6] J. Pollack and A. Blair. Why did td-gammon work?
In Advances in Neural Information Processing

Systems, pages 10–16. Citeseer, 1997.

[7] T. Runarsson and S. Lucas. Coevolution versus
self-play temporal difference learning for acquiring
position evaluation in small-board go. Evolutionary
Computation, IEEE Transactions on, 9(6):628–640,
2005.

[8] S. Singh and R. Sutton. Reinforcement learning with
replacing eligibility traces. Recent Advances in

Reinforcement Learning, pages 123–158, 1996.

[9] G. Tesauro. Practical issues in temporal difference
learning. Machine learning, 8(3):257–277, 1992.

[10] G. Tesauro. Temporal difference learning and
td-gammon. Communications of the ACM,
38(3):58–68, 1995.

[11] G. Tesauro. Comments on “co-evolution in the
successful learning of backgammon strategy”. Mach.

Learn., 32:241–243, September 1998.

[12] S. Whiteson and P. Stone. Evolutionary function
approximation for reinforcement learning. The Journal

of Machine Learning Research, 7:877–917, 2006.

[13] M. Wiering, J. Patist, and H. Mannen. Learning to
play board games using temporal difference methods.
UU-CS, (2005-048), 2005.

