
An Evolutionary Feature Discovery Method for
Reinforcement Learning

Reza Mahjourian
Department of Computer Science

University of Texas at Austin

reza@cs.utexas.edu

Peter Stone
Department of Computer Science

University of Texas at Austin

pstone@cs.utexas.edu

ABSTRACT
Using linear methods for reinforcement learning problems requires

designing efficient features. However, designing features often re-

quires having ample knowledge about the problem domain. When

dealing with complex problem domains, coming up with efficient

feature sets often requires a trial and error process which can prove

difficult or inefficient. We present an evolutionary algorithm for

generating and evaluating candidate feature sets for learning a task

using gradient descent Sarsa(λ) as a linear method. Our evalua-

tions on three different problem domains show that our solution is

effective.

1. INTRODUCTION
Most real-world reinforcement learning (RL) problems involve nu-

merous state variables or state variables which are continuous. Such

properties in state variables make application of tabular learning

methods such as Q-learning impractical. For this reason, there are

alternative learning methods which use function approximators to

approximate the values of states or state-action pairs. Examples of

widely-used function approximators are neural networks and linear

architectures.

In order to employ function approximation, one needs to come up

with a suitable design for a function approximator. Function ap-

proximators usually operate on features, which are high-level ab-

stractions of important properties in the problem state. Designing

suitable features for a problem requires sufficient domain knowl-

edge. Often the designer has to try different sets of features and see

if they perform well or not.

We present an evolutionary method for discovering effective fea-

tures for learning a task using reinforcement learning. We focus

our attention on discovering features which are suitable for linear

architectures, because 1) linear architectures are easier to under-

stand and analyze compared to some other types of learners like

neural networks and 2) they are efficient in terms of speed of con-

vergence and computational resources needed. The complexity of

linear methods increases only linearly with the number of features

used. However, one must come up with a set of features that would

be suitable for learning the problem. In particular, in order for a

linear function approximator to work well, the features need to be

independent of each other as much as possible.

In this paper, we focus on problems with spatial state variables.

However, we expect that with appropriate modifications this method

can be extended to be applicable a wider range of state representa-

tions and feature types.

2. RELATED WORK
The work in [1] is one of the earliest publications which discuss the

process of constructing features from lower level state variables via

some set of transformations.

Most feature discovery solutions in the context of Reinforcement

Learning try to create higher level features by construction basis

functions [6], [2]. Most of this work is mathematically grounded

and the features are less recognizable/understandable than those

created by our method.

There are also feature discovery solutions that use genetic algo-

rithms. An example is the work in [4]. These evolutionary methods

typically use genetic algorithms to evolve features directly, rather

than evolving agents who each have their own feature sets.

For example, Learning Classifier Systems like XCSF [11] operate

over a space of binary features in the problem domain and employ

genetic algorithms to learn a piece-wise linear approximation over

the original state variables.

As another example, NEAT-Q [10] evolves neural network topolo-

gies that can learn a Reinforcement Learning task using Q-Learning.

The features discovered by such a solution are implicitly repre-

sented in the network weights that are trained through back propa-

gation based on the TD (Temporal Difference) errors.

3. THE PROBLEM DOMAINS

3.1 Knight Joust
The first domain that we use is Knight Joust [9]. The environment

for the Knight Joust task is situated on a 25× 25 grid. In this task,

a player starts on the lowest row of the grid and an opponent starts

on the highest row of the grid. The player and the opponent alter-

nate moves. The player’s goal is to reach the highest row without

being captured by the opponent. In each time step, the player can

choose from one of the following three actions: 1) Forward: The

player moves one square north. 2) Jump West: The player moves

one square north and two square west. 3) Jump East: The player

moves one square north and two square east.



Figure 1: Hand-coded Features in Knight Joust (from [9])

The player receives a reward of +20 whenever it takes the Forward

action and a reward of 0 whenever it performs a jump. Moreover,

the player receives an additional reward of +20 when it reaches the

highest row on the grid. The episode terminates when the player

reaches the highest row or when it is captured by the opponent.

In each time step, the opponent can move one cell in each of the 8

possible directions. The opponent uses the fixed policy outlined in

Figure 2.

if Opponent is East of Player:
Move West with probability 0.9

else if Opponent is West of Player:
Move East with probability 0.9

if Opponent is North of Player:
Move South with probability 1.0

else if Opponent is South of Player:
Move North with probability 0.8

Figure 2: Knight Joust Opponent Policy

Figure 1 (taken from [9]) shows a sample state on the Knight Joust

grid. To make the problem more challenging, we set the starting

column for the player and the opponent randomly in each episode.

3.2 Simplified Single-Agent Keepaway Soccer

Simulation
The Keepaway Soccer game [7] is a relatively complicated multi-

agent learning problem. In 3× 2 Keepaway, a group of three keep-

ers try to maintain possession of a ball in a 25m × 25m square

field while two takers try to take the ball by approaching the keeper

with the ball or by intercepting their passes. The keepers should

learn to keep the ball for longer periods. Figure 3 shows a sample

configuration of the original Keepaway field.

We designed a simplified version of this domain to study our algo-

rithm on a domain with continuous state variables. In our version,

the problem is treated as a single-agent task. The agent is aware

which keeper has possession of the ball and can choose from one

of the three available actions: a) keep the ball, b) pass the ball to

keeper 2, and c) pass the ball to keeper 3. Passes take exactly one

time step to complete and can succeed or fail probabilistically de-

pending on the positions of the players.

Figure 3: Hand-coded Features in the Original Keepaway Soc-

cer Domain (from [9])

The probabilities with which a taker can steal from a keep action or

intercept a pass action are determined by the following rules.

• taker1 steals from a keep action with probability:

min(1/dist(keeper, taker1), 1)

• taker1 intercepts a pass from keepera to keeperb with prob-

ability:

min(1/(dist(taker1, linea,b) + 4.0), 1) + 0.1

Similar probabilities apply to taker2. Based on these probabilities,

the optimal strategy for a keeper would be to try to keep the ball as

long as no takers are close, and pass it before they get too close.

Based on the probabilities, a pass is more likely to succeed if the

takers are farther from the trajectory of the pass.

3.3 Mini-soccer
The third and last problem domain we study is the Mini-soccer

domain, which is introduced in [5]. The original game is played

in a 4 × 5 grid as shown in Figure 4 with two goalposts of size

2 cells. However, in our implementation we used a field size of

10× 20 cells with goalposts of size 4 cells.

There are two players, A and B, which start at fixed positions on the

grid on every episode. One of the players has possession of the ball.

The objective for each player is to move the ball to the goal zone

at the opposing side. Scoring a goal results in a reward of +1 at

the end, and receiving a goal results in a reward of -1. In each step

each players can choose one of the five available actions: North,

South, East, West, and Stand. Once the players have selected their

actions, their moves take place simultaneously. If the two players

enter the same cell at the end of a move, the moves don’t take place

and possession of the ball is transferred to the other player.

Since this domain requires an opponent, we developed a simple

agent with a fixed policy which can play against our learning agents.

4. BASELINE SOLUTIONS
In order to develop baselines for evaluation of our evolutionary fea-

ture discovery method, we first start by discussing some conven-

tional solutions for learning these tasks.



Figure 4: Initial configuration in Mini-soccer domain (from [5])

4.1 Tabular Sarsa(λ)
For the Knight Joust problem, one can learn the task using tabular

Sarsa(λ) on the raw state variables. There are 254 potential states

and, therefore, there would be 254 × 3 state-action-value entries.

So using a tabular method to maintain the value estimates is fea-

sible. Likewise, the number of states in the Mini-soccer game is

small enough for a tabular method to be applicable. In the Simpli-

fied Keepaway Soccer problem the state variables are continuous

and we can’t use tabular methods, unless we employ tiling or some

other form of state abstraction.

4.2 Linear Architectures with Gradient Descent

Sarsa(λ)
Another solution for learning these tasks is using a linear method

like Gradient Descent Sarsa(λ) [8] on a set of features.

For the Knight Joust problem, we used the following set of fea-

tures, which were suggested by the original author of the problem:

1) Dist(P,O): The distance between the player and the oppo-

nent. 2) Ang(West): The angle between the lines connecting the

player to the opponent and to the upper right corner of the grid. 3)

Ang(East): The angle between the lines connecting the player to

the opponent and to the upper left corner of the grid. These features

are shown in Figure 1 as well.

The solution discussed in [9] uses discretized values of the above

distance and angle measurements to learn the task using tabular

Sarsa(λ). However since we are interested in linear architectures,

we use an encoding of the features similar to the solution for the

Keepaway Soccer game given in [7]. We create 10 one-dimensional

tilings of each feature to get 30 feature groups. Each tiling consists

of 10 tiles. Also, each set of tilings are created using a different

offset to provide a smooth coverage over the range of values. The

features are encoded using a unary encoding. Therefore, our lin-

ear architecture consists of 300 binary features and there are 300

weights to be learned for each of the 3 possible actions.

For Simplified Keepaway Soccer, we learn the task using the 13

features defined in [7]. These features are shown in Figure 3. Since

our simulation of the Keepaway Soccer game is very different from

its original settings, we can’t expect the same set of features to be

optimal or even effective for learning this domain. On the other

hand, they seem to be a reasonable set of features for learning this

task, so we choose to use them as a representation of what an in-

formed domain expert might come up with.

Similarly, for the Mini-soccer domain we hand designed the fol-

lowing set of features for learning the task: 1) Ball in possession

flag 2) Distance between the agent and the opponent 3) Distance

between the agent and center of the right goal 4) Distance between

the agent and center of the left goal 5) Distance between the oppo-

nent and center of the right goal 6) Distance between the opponent

and center of the left goal 7) Angle between the agent, opponent,

and top right corner of the right goal 8) Angle between the agent,

opponent, and bottom left corner of the left goal. Except for the first

feature, which is a binary flag, each of the other features were dis-

cretized 10 times using different offset values to provide a smooth

coverage over the range of possible values.

5. EVOLUTIONARY FEATURE DISCOVERY
Were we not given any suggestions on what features to use to learn

the Knight Joust, Keepaway Soccer, and Mini-soccer tasks, how

could we have come up with a set of features that would be efficient

for learning these problems? Moreover, starting with a given set of

features, how could we search for alternative and potentially more

efficient features for these domains?

We are interested in an evolutionary method which can evolve a

suitable set of features for learning a task using a linear architec-

ture. There are two possible ways to approach this problem with an

evolutionary method: The first approach is to evolve a set of fea-

tures which would be efficient for learning the task from scratch.

In other words, we would use evolution to discover a set of fea-

tures that can learn the task more quickly from scratch. The second

approach is to use an agent with a dynamic set of features, which

continues to improve its performance by successively evolving its

feature set.

The first option is akin to Darwinian evolution, while the second

option is akin to Lamarckian evolution. Both of these approaches

are viable and may have their own use cases. The first option may

be more attractive if we are experimenting with a smaller version

of a problem and hope to develop a set of features that can learn

the original problem more efficiently. This option is also attractive

from an analytical point of view, when we are interested in devel-

oping an understanding about the properties of a domain and the

properties of the features that can be used for learning it.

Evaluating a Darwinian solution would be more time-consuming,

since evaluating each candidate set of features requires testing it

on an agent which has no prior learning experience in the domain.

With the Lamarckian approach, however, a surviving agent wouldn’t

lose what it has already learned in the previous generations, and in-

stead would continue its learning process with a modified set of

features.

We chose to follow the second approach, as it is more suitable if we

mainly care about learning the task as easily as possible. Moreover,

a solution based on the second approach can be extended to develop

an online solution, which would try to maximize the cumulative

reward in every generation while still allowing for exploration [10].

5.1 The Algorithm Outline
Our evolutionary algorithm is based on the concept of “Featuriz-

ers.” They are entities that can generate candidate features from the

variables defined in the agent’s state representation. The algorithm

starts with an agent which has an empty feature set. Using the avail-

able featurizers, a Mutator creates mutated copies of the agent. The

featurizers serve as the mutation operations available to the Muta-

tor. Once the number of agents reaches the predefined population

size, the agents in the population are trained in the environment for

a predefined number of episodes. At the end of the training phase,



the agents which receive the most reward are selected for survival

and the other agents are discarded. In the subsequent generation,

the Mutator again uses the available featurizers to mutate the fea-

ture sets of the surviving agents. Original unmutated versions of the

the surviving agents are also kept in the next generation. The Mu-

tator also copies over the trained weights from the original agents

to the mutated agents.

5.2 State Representation
Even though we were mainly concerned with learning the three

problems discussed earlier, we tried to create a framework which

would be applicable to a wider range of problems and different

kinds of featurizers. In particular, we designed a modular represen-

tation of the state. In this representation, the problem’s state has to

be encoded as a set of state components. For the Knight Joust prob-

lem and the Simplified Keepaway Soccer problem, the only type of

state component that we needed was a two-dimensional point. For

example, the state in the Knight Joust problem can be encoded as

two points. For the Mini-soccer game, we needed two-dimensional

points and a binary flag state component used to indicate whether

the agent has possession of the ball or not. Some other state com-

ponents that might be useful for other types of problem domains

are: n-dimensional points, angles, and values from a fixed discrete

set.

Depending on their type, the state components can be tagged with

additional attributes. For example, points are tagged with ranges of

the values that they can take. Also, points can be tagged as con-

tinuous or discrete. The values of these attributes would enable the

featurizers to pick the appropriate types of components for creating

candidate features.

5.3 Featurizers
A featurizer is an entity which can create candidate features from

the set of components or variables in the state. Featurizers can also

modify existing features. Since featurizers work only in terms of

state components and current features, one can imagine a library

of featurizers that can be used in different problem domains with-

out any change. Each featurizer has some criteria for picking its

input components. For example, some featurizer may only oper-

ate on state components with continuous values. Below is a list of

featurizers that we have implemented so far.

• Binary Flag Featurizer (Flag) This feature is only relevant

to state variables that are represented as a binary flag. It maps

the binary-valued state variable to a feature with two cells. At

any given point in time, one of these two cells is considered

on, depending on the value of the state variable.

• Point-Point Distance Featurizer (Dist) Selects two points

and creates a feature with a tile coding of the distance be-

tween them.

• Point-Point Projected Distance Featurizer (Dist-Y or Dist-Y)

Similar to the previous featurizer, but computes the distance

projected on one of the axes (for example X or Y.)

• Angle Featurizer (Angle) Selects three points and creates

a feature with a tile coding of the angle between them.

• Two-dimensional Point Featurizer (Point-XY) Selects a

non-stationary point and creates a feature based on a two-

dimensional tile coding of it.

• One-dimensional Point Featurizer (Point-X) Selects a

non-stationary point and creates a feature based on a one-

dimensional tile coding of its x or y component.

• Retile Featurizer Selects an existing feature and creates a

retiling of it using a random offset value.

• Interaction Featurizer (Interaction) Selects two exist-

ing features and creates a new feature by considering the pos-

sible combinations of the values for the two features. This

featurizer can produce effective features in cases where the

generated simple features are not independent and there are

interactions between them in the problem domain.

Even though one can consider using every type of featurizer avail-

able in this library, in our implementation the Mutator accepts a list

of desired featurizers as input. In addition, each selected featurizers

is associated with a probability which specifies how often it should

be tried during mutations. Section 8 discusses an alternative.

In addition to the components that come from the learner’s state,

the featurizers can also work with variables that are defined in the

domain’s environment. For example, in the Knight Joust prob-

lem, we considered the four corners of the board as four important

points. Likewise, in the Simplified Keepaway Soccer game, the

four corners and the center of the board were considered as impor-

tant points. These extra components can either be defined explicitly

in the environment, or be extracted using some heuristic methods.

5.4 Feature Set Costs
Our evolutionary algorithm can also factor in the computational

costs of the candidate feature sets. For some problems, it might

be desirable to discover feature sets that are not only efficient, but

also light, in terms of the computational costs associated with train-

ing them. Different feature types generated by different featurizers

typically have different computational costs. For example, the in-

teraction featurizer and multi-dimensional tilings of points create

more binary features compared to scalar distance and angle featur-

izers.

At the end of each generation, we discount the rewards received

by feature sets based on their computational costs. To control how

aggressively the algorithm tries to reduce the computational cost

of the selected feature sets, we created a parameter named η. At

the end of each generation, the rewards received by feature set f
are multiplied by ηcost(f)/min(cost), where cost(f) represents the

computational cost of feature set f and min(cost) represents the

cost of the lightest feature set in the population. A values of 1.0 for

η amounts to ignoring the computational costs. Our experiments

showed that choosing a value around 0.98 is enough to make the

algorithm select lighter feature sets.

To estimate the cost of the feature sets, we first tried regressing

an analytical model which would estimate the cost of a feature set

from the types of features present in it. However, this proved to be

difficult, since feature types performed differently across different

problem domains. So, instead, we switched to recording and using

the actual CPU seconds that the feature set uses during training and

use that as the value of cost(f).

In order to focus on the core behavior of the algorithm, for all the

experiments reported in this paper we set the value of η to 1.0,



making the algorithm try to optimize rewards and ignore the costs

of the feature sets.

6. THE EXPERIMENT SETUP
We first ran the baseline implementations for all three domains.

There are two implementations for the Knight Joust problem, one

implementation for the Simplified Keepaway Soccer, and one for

the Mini-soccer problem. For all baseline implementations we ran

the programs for 20 of trials and averaged the results over those

trials. In addition, out of those 20 trials, we selected the trial that

produced the highest average rewards and extracted its final policy

as the best policy that the hand-coded feature sets could produce.

This policy was in turn evaluated over 3000 problems for 20 trials.

Then, we ran the evolutionary algorithm once for each of the three

domains. During each generation, we recorded the rewards re-

ceived by the champion of the generation. We also recorded the

average rewards received by all the population in each generation.

Once the algorithm terminated, we selected the generation that had

produced the highest average rewards and extracted its final policy

as the best policy that the evolutionary algorithm could produce.

Similarly to the hand-coded agents, this policy was in turn evalu-

ated over 3000 problems for 20 trials.

6.1 Basic Parameters
In all experiments, we set the value of λ to 0.95, ǫ to 0.05, and α to

0.1. The values of ǫ and α are kept constant and do not change over

time. This choice was mainly made because we wanted to keep the

parameters for the baseline implementations and the evolutionary

implementations exactly the same at all times. In the Knight Joust

and Simplified Keepaway Soccer domains, we set the value of γ,

the discount factor in the environment, to 1.0. For the Mini-soccer

domain, we set γ to 0.95 to encourage the agents to score more

quickly.

In all implementations, we used replacing eligibility traces. The

eligibility trace of the current state-action pair, or the trace for the

present features and selected action are set to one. Also, the eli-

gibility trace for all the other actions over the current state, or the

present features, are set to zero.

For all three problem domains we used 15 generations with a pop-

ulation size of 100. Each generation was trained for 200 episodes.

Also, to make the comparison of evolving feature sets more re-

liable with fewer training episodes, we train all the agents in the

population on the same set of starting states, which are generated

randomly at the start of the generation.

In addition, we generate a set of seed values for the random num-

ber generator at the start of each generation and use the same seed

values for the corresponding episodes for all the agents [3].

6.2 Initializing Weights
Even though in the Sarsa(λ) algorithm the initial weights could be

set arbitrarily, we preferred to set the initial weights optimistically

to speed up exploration in the early phases. Likewise, for tabular

Sarsa(λ), we set the initial Q-values optimistically.

For the evolutionary algorithm, we experimented with different strate-

gies for initializing weights. In the very first generation, where all

the agents have only one feature group in their feature set, we set

the weight optimistically.

As discussed earlier, at the end of every generation successful fea-

ture sets which survive are selected for mutation, whereby they

are augmented with newly generated features. We tried three main

strategies for setting the weights on the newly added features. The

first strategy was to set the weights optimistically regardless of the

current weights associated with the existing feature set. The sec-

ond strategy was to scale down the weights on the existing features

and then set the weights on the new feature group optimistically in

proportion to the number of existing features. The last strategy we

tried was to set all new weights to zero. In fact, we tried a para-

metric implementation which could vary the weights on the new

feature groups from 0.0 to the maximum value of 1/f , where f is

the number of feature groups in the existing feature set.

The results from our experiments showed that out of these differ-

ent strategies pessimistic initialization of weights (setting them all

to zero) worked the best. One possible explanation for this is that

setting the new weights optimistically disturbs the agent’s existing

state value estimates and forces the feature set to undergo some pe-

riod of readjustment at the beginning of every new generation. On

the other hand, setting the new weights to zero allows the mutated

agents to retain their existing value estimates for the states. When

a mutated agent starts operating in the new generation, the newly

added feature starts with having no influence in evaluating the state

values and just gets trained based on the decisions that the previous

feature groups prefer. Then, provided the new feature is useful, at

some point it could come into play by differentiating between states

that would otherwise look identical to the existing features.

6.3 Selection Process
We use a soft-max method for determining which agents get to sur-

vive for the next generation and the probabilities by which they get

selected for mutation and generation of new feature sets. At the

end of each generation, the top 15% of the population are selected

for survival. Then, a soft-max algorithm is used to randomly select

one of the surviving agents and augment its feature set by applying

one of the available featurizers to generate a new feature.

Using a soft-max method allows for maintaining some diversity

in the population, and at the same time prioritization feature sets

which have performed better. At the end of each generation, the

rewards received by the different agents are normalized against the

average and the soft-max algorithm is applied. We use a temper-

ature value of τ = 2.0. Normalizing against the average allows

the algorithm to behave more consistently with different scales in

reward values.

7. RESULTS AND ANALYSIS

7.1 Knight Joust
To get an idea how a straight-forward tabular implementation of

Sarsa (λ) would do on the simple Knight Joust task, we trained a

tabular Sarsa (λ) on the raw state variables over 20 trials. The re-

wards nearly plateaued at about 375 per episode after about 500000

episodes. In this domain, the agent can receive a theoretical maxi-

mum of 400, assuming it never has to use jumps.

Figure 5 shows the results of running Gradient Descent Sarsa(λ) for

the Knight Joust problem with the 300 hand-coded binary features

explained in Section 4.

As seen in Figure 5, after 3000 episodes of training the agent can

achieve an average reward of about 340. This is the average over
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Figure 5: Knight Joust: Rewards received by the agent using

hand-coded features

20 trials. Once the 20 trials were finished, we selected the trial that

achieved the highest rewards. The weights learned in this trial rep-

resented the best policy that the hand-coded features learned over

the 20 trials. We then fixed these weights and evaluated the agent

over 3000 randomly generated Knight Joust problems. We repeated

this evaluation 20 times with different sets of randomly generated

problems. The flat line in Figure 5 shows the rewards achieved by

this policy.

Next, we ran the evolutionary algorithm in this domain. Figure 6

shows the rewards received by the champions of each generation in

the evolutionary algorithm. The graph shows 3000 episodes, corre-

sponding to 15 generations with 200 episodes each. Note that this

graph reflects a single run of the evolutionary algorithm. Therefore,

the solid line shows the rewards received by an individual champion

in each generation. This might explain why this plot is more noisy

compared to Figure 5, where the rewards were averaged over 20

trials. Also, each 200 episodes in this graph correspond to a possi-

bly different feature set, since it reflects the rewards received by the

champion of that generation. The second line in the graph shows

the average rewards received by all the agents in the population in

each generation. As seen in Figure 5, there is not a big difference

between the champion and the other agents in the population.

As shown in the Figure 6, the evolutionary solution is able to achieve

an average reward of about 400 per episode, which is higher than

the rewards achieved by the hand-coded feature set. The champion

agent reaches this level after about 5 generations (1000 episodes.)

At this point, the champion’s feature set contains at most 5 feature

groups, while the hand-coded feature set contains 30 feature groups

as outlined in Section 4.2.

At the end of the 15 generations, we selected the generation whose

champion achieved the highest reward. This was not necessarily the

last generation champion. The algorithm was usually able to find an

efficient feature set within just a few generations, such that adding

extra features to this feature set did not improve the performance.

We then extracted the policy learned by this champion by fixing

the learned weights and evaluated this policy over 3000 randomly

generated problems over 20 trials.

Figure 7 compares the rewards received by the champions in the

evolutionary algorithm with the rewards received by the baseline

solution using the hand-coded set of features. It also compares

the rewards achieved by the best policies produced by each algo-

rithm. As shown in the figure, the evolutionary algorithm is able

to find better policies than the hand-coded features. For the evolu-

tionary algorithm, the rewards achieved by the best policy are just

slightly higher than the rewards achieved by the generation cham-

pions. However, it seems that in the case of hand-coded features,

there is a wider gap between the best policy and the average rewards

over 20 trials.
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Figure 6: Knight Joust: Rewards received by the agents in the

evolutionary algorithm
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Figure 7: Knight Joust: Comparing the performance of the

best policies obtained from hand-coded features and the evolu-

tionary algorithm

Table 1 shows the feature set of the champions of the first few gen-

erations, as well as the feature set of the final champion at the end

of the 15th generation. At the end of the second generation, the

agent using the two features Dist-X(player-opponent) and

Dist-Y(player-opponent) shows the best performance, which

is somewhat expected due to the characteristics of the domain. The

Dist-X feature is based on the distance of the two points pro-

jected on the X axis. Likewise, the The Dist-Y feature measures

the distance projected on the Y axis. The numbers inside the square

braces show the tiling offsets used by each feature group. The value

of offset can range anywhere from 0.0 up to 1.0 and is generated

randomly at the time of feature generation.



G. Feature Set R.

1 Dist-Y(opponent-lowerleft)[0.0] 297.90

2 Dist-X(player-opponent)[1.0], Dist-Y(player-
opponent)[0.0]

341.20

3 Dist-X(opponent-player)[1.0], Point-
XY(player)[0.4], Point-XY(opponent)[0.7]

344.50

4 Dist-Y(player-lowerleft)[0.0], Dist(player-
opponent)[0.5], Angle(opponent-lowerright-
player)[0.8]

364.00

5 Dist-X(opponent-player)[1.0], Point-
XY(player)[0.4], Dist-X(opponent-lowerleft)[1.0],
Dist-Y(opponent-player)[1.0], Dist-X(player-
opponent)[1.0]

365.10

. . . . . . . . .

15 Dist-X(opponent-player)[1.0], Point-
XY(player)[0.4], Dist-X(opponent-lowerleft)[1.0],
Dist-Y(opponent-player)[1.0], Dist(opponent-
player)[0.8], Interaction(Dist-Y(opponent-
player)[1.0] * Dist(opponent-player)[0.8]), Dist-
Y(opponent-player)[0.0], Angle(opponent-player-
upperleft)[0.6], Point-XY(player)[0.4], Point-
X(player)[0.1], Dist-X(player-lowerright)[1.0],
Angle(player-upperleft-opponent)[0.2]

390.90

Table 1: Knight Joust: Champion feature sets at the end of

some generations

Even though the evolutionary algorithm is able to surpass the agent

with the hand-coded set of features, we should observe that it has

a higher computational cost. For every training episode used by

the baseline implementation, the evolutionary algorithm uses 100

episodes for training all the agents in the current population.

7.2 Simplified Keepaway Soccer
Figure 8 shows the result of running both algorithms in the Simpli-

fied Keepaway domain. As shown in the figure, at the end of 3000

episodes the agent with hand-coded features achieves an average

award of about 10 per episode. Also, when we extracted the best

policy out of the 20 trials, the hand-coded feature set could achieve

an average reward of about 18 per episode over the 3000 randomly

generated problems. This is while the champions in the evolution-

ary algorithm can reach an average reward of about 24 and the best

policy discovered reaches about 30.

For Simplified Keepaway Soccer, the gap between the evolutionary

algorithm and the hand-coded feature set is quite high. This is prob-

ably because the hand-coded feature set that we have selected is not

well suited for our version of the keepaway game. This feature set

was designed by the authors in [7] for a different version of the

game. We could have tried finding other candidates for the hand-

coded feature sets. This would have been a trial and error process;

Exactly the kind of which the solution in this paper is designed to

avoid.

It is also possible that hand-coded feature set needs many more

episodes to learn the task. It is likely that the large number of

features in the hand-coded agent combined with optimistic initial-

ization of the weights does not allow the agent to exit the initial

exploratory phase of learning by the end of 3000 episodes.

Table 2 shows the champion feature sets discovered in this domain

at the end of some representative generations.

7.3 Mini-soccer
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Figure 8: Simplified Keepaway: Comparing the performance

of the best policies obtained from hand-coded features and the

evolutionary algorithm

G. Feature Set R.

1 Dist-Y(keeper2-upperleft)[1.0] 15.46

2 Dist-Y(keeper2-upperleft)[1.0], Dist-Y(taker1-
keeper1)[0.0]

17.91

3 Dist-Y(keeper2-upperleft)[1.0], Dist-Y(taker1-
keeper1)[0.0], Dist-X(taker1-keeper2)[1.0]

22.71

4 Dist(taker2-upperright)[0.6], Dist-Y(taker2-
keeper1)[0.0], Point-XY(taker2)[0.7],
Interaction(Dist-Y(taker2-keeper1)[0.0] * Point-
XY(taker2)[0.7])

22.71

. . . . . . . . .

15 Dist(taker2-upperright)[0.6], Dist-Y(taker2-
keeper1)[0.0], Point-X(keeper2)[0.4], Dist(keeper3-
keeper2)[0.8], Interaction(Dist-Y(taker2-
keeper1)[0.0] * Dist(taker2-upperright)[0.6]), Point-
X(taker1)[0.7], Dist-Y(taker2-keeper1)[1.0], Dist-
X(keeper2-lowerleft)[1.0], Point-X(keeper2)[0.4],
Point-X(taker1)[0.7], Dist-X(taker1-keeper2)[1.0],
Interaction(Point-X(keeper2)[0.4] * Point-
X(taker1)[0.7])

22.38

Table 2: Simplified Keepaway: Champion feature sets at the

end of some generations

As in the previous domains, we present the results on performance

of the hand-coded feature set and the evolutionary algorithm both

during training, and after we have extracted their best policies.

Figure 9 shows the the results for running both algorithms. The av-

erage rewards received by the hand-coded feature set reaches about

0.1. On the other hand, the generation champions in the evolu-

tionary algorithm are able to reach an average reward of 0.35 after

about 10 generations. Because of the discounting factor, the best

an agent can do in this domain is receiving a reward of about 0.41

and the worst it can do is to receive -0.41.

Figure 9 also compares the performance of the best policies ex-

tracted from each algorithm. In this domain, our hand-coded fea-

ture set was able to learn an efficient policy. However, our hand-

coded feature set used 71 feature groups discretized from 8 original

features. This is while the feature set learned by the evolutionary

algorithm uses far fewer features groups.



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600  2800  3000

R
e
w

a
rd

Episode

Best Champion’s Policy (20 Trials)
Champions over 15 Generations (Training)

Handcoded Features Training (20 Trials)
Best Policy from Handcoded Features (20 Trials)

Figure 9: Mini-soccer: Comparing the performance of the best

policies obtained from hand-coded features and the evolution-

ary algorithm

G. Feature Set R.

1 Angle(opponent-rightgoaltop-player)[0.6] -0.12

2 Angle(player-opponent-rightgoalbottom)[0.8],
Flag(player-has-ball)

0.10

3 Angle(opponent-rightgoalcenter-player)[0.1],
Flag(player-has-ball), Dist(player-opponent)[0.6]

0.20

4 Angle(opponent-rightgoalcenter-player)[0.1],
Flag(player-has-ball), Dist(opponent-player)[0.1],
Angle(opponent-rightgoalcenter-player)[0.4]

0.21

5 Angle(opponent-rightgoalcenter-player)[0.1],
Flag(player-has-ball), Dist(opponent-player)[0.1],
Interaction(Flag(player-has-ball) * Angle(opponent-
rightgoalcenter-player)[0.1]), Dist-Y(player-
opponent)[1.0]

0.21

. . . . . . . . .

Table 3: Mini-soccer: Champion feature sets at the end of some

generations

Table 3 shows the champion feature sets discovered in the Mini-

soccer domain at the end of some representative generations. The

Mini-soccer is a domain where there are interactions between the

features: An efficient policy needs to make a distinction between

the states where the player has the ball, and therefore need to go

for the goal, and the states where the player does not have the ball,

and therefore needs to block the opponent to gain possession of the

ball. This is reflected in the champion feature sets discovered by

the evolutionary algorithm; The algorithm selects many interaction

type features which combine the ball possession flag with other

features based on angles and distances.

8. CONCLUSIONS
We have introduced and evaluated an evolutionary algorithm for

discovering efficient features for learning RL tasks using gradient

descent Sarsa(λ) as an example linear method. Our evaluation re-

sults show that the algorithm has been able to evolve agents which

are able to learn the tasks efficiently, at least as compared with our

hand-coded feature sets. However, the evolutionary algorithm is

able to identify the most important set of features for each prob-

lem. Inspecting the champion feature sets of the earlier generations

reveals some minimal sets of features which have resulted in the

biggest improvements in rewards.

8.1 Potential Improvements
The evolutionary algorithm can be extended to be used for online

learning, where it is important to maximize the cumulative reward

received over all episodes. To achieve this, we could use an ǫ-soft

or a soft-max method to give a higher priority to training the agents

that are more promising.

Another idea for improving the algorithm is designing a credit sys-

tem which could guide the Mutator and the featurizers on the effec-

tiveness of their previous choices. For example, if a feature based

on the distance between two points S1 and S2 performs very well

in training, the algorithm can assign some credit both to the dis-

tance featurizer, and to the points S1 and S2. The credit system

would make the distance featurizer more likely to get selected in

subsequent mutations. Also, any featurizers looking for points in

the state would be more likely to select S1 or S2. One can also use

an idea similar to eligibility traces to assign back credit to the com-

ponents of features that were created in the previous generations.

In situations where the number of featurizers or state variables is

very large, this form of credit assignment can be expected to in-

crease the rate of progress in the evolutionary algorithm.
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